SOME PARASITES OF SIMULIUM LARV无 AND THEIR EFFECTS ON THE DEVELOPMENT OF THE HOST. ${ }^{1}$

E. H. STRICKLAN゙D,
Carnegie Scholar in Economic Entomology:

During the spring of the present year (I9II) while studying entomology at the Bussey Institution of Harvard University, I made numerous collections of Simulium larva, which are extremely abundant in the neighboring streams, with the intention of studying the development of the imaginal dises which are unusually well defined in this genus of diptera. As, however, I found that a large percentage of these interesting larve were heavily parasitized by two very different organisms, namely a worm and a protozoön, I turned my attention rather more directly to these and their effects on their hosts, during the few weeks intervening between my first discovery of the parasites and the pupation of the insects.

Before giving any details I wish to take this opportunity to offer my sincere thanks to Professor Wheeler, who by his kind suggestions and advise enabled me to bring together the following facts, which, though very incomplete in form, do not appear to have been recorded before. My thanks are also due to Professor Johannsen for naming the species of Simulium larve and to Professor T. H. Montgomery who identified the worm parasite as a species of Mermis.

Life History and Strlcture of Simulium Lartie.
A brief summary of the structure, and mode of life, of the Simulium larve may not be out of place here.

If during the months of March to May one examines the rocks or vegetation in any swifty flowing stream in the neighborhood of Forest Hills, Mass., especially where its bed causes a small cascade, one wilh, in all probability, observe a large, dark, gelatinous mass where the current is swiftest and the water
${ }^{1}$ Contributions from the Entomological Laboratory of the Bussey Institution, Harvard University, No. 45.)
shallowest. On closer examination the mass will be seen to consist of numerous curiously shaped larvæ standing upright on the rock, to which the hind end of the abdomen is firmly attached. These larvæ, the largest known North American species of which measure when mature some 12 mm ., have the following characters: The soft-skinned body is more or less cylindrical, though the posterior third is somewhat swollen. The segments are poorly defined but the first three behind the head, namely, the thoracic segments, are usually distinctly marked off from the following abdominal segments.

The prothoracic segment bears a single leg (Plate I., Fig. I) which is apparently two-jointed; the distal joint is small and retractile and terminates in a sucker which is armed with numerous hooks. Nor other segment bears any trace of legs, with the exreption of the appical abetominal segment where the pair of anal prolegs of some other larva is represented by a powerful, armed disk-like sucker, by means of which the larta firmly attaches itself to rocks or vegetation when at rest. The skin is usually of a gremish gray color in immatture larsat, but gives place to a reddish brown as they mature.

The head is sut-eylindrical and is usually of a darker color than the rest of the body. It chitinous integument is much denser and lese clastic than that cotering the remainder of the bexdy. This results, durings growth, in atn ecdysis of the head capsule alone, being necemary more frequently than that of the general cuticular covering of the booly: The new head capsule expused after such an ecolysis is perfectly pigmentless in Simulium hirlipes, though dark spots som form on its vertex (Plate I., Fig: $2, a, b$ and c, followed be a gradual infuscation of the whole surface. Individuals were wherved in which the almost black head eapsule was half remowed, exposing the new pigmentless capsule, entirely independently of the body cuticle, the ecdysis of which was never ohserved, except at pupation.

On either side of the head are two black eye spots and on the anterior border are two lateral fan-like organs borne on elongated pedicels, which are used by the larsa in procuring food. These fans consist of numerous cursed rakes (Plate I., Fig. 3) bearing on one side long stiff cilia which, when the fan is expanded,
stretch from one rake to the next, thus forming a very fine strainer which allows water to pass through it, but retains any small organisms, such as the diatoms, on which the larva subsists. By means of a curious flicking motion these fans can be closed and their contents brushed into the mouth orifice. Here are situated two large glands (Plate IV'., Figs. 9 and $10(d)$) on the dorsal side of the pharynx, whose function appears never to have been determined. They are cosered with an apparently porous membrane which is clothed with short stout hairs. It would seem that they secrete some sticky material onto these hairs which removes the particles of food from the rakes when the latter are brought in contact with them.

It is usually stated that the fans are used to set up currents in the water and thus sweep food toward the mouth. My observations, however, lead me to believe that they act as a "strainer" and this is supported by the fact that, living as these larve do, in the swiftest currents, such movements would be useless.

The salivary glands are very large and secrete powerful silken threads which are used by the larve as anchor lines to hold them in an upright position no matter how strongly the current of water may flow.

Although the larva appear to be very sluggish, they can move about actively on the rocks by a looping motion similar to that of the geometrid larva. It is interesting to note the care with which these larve, when thus moving about, assure themselves that the adhesive disc of the prothoracic leg is firmly attached before relaxing the anal disc and vice versâ. Respiration is accomplished by means of retractile finger-like blood gills, normally three in number, which are situated on the dorsal surface of the last abdominal segment just above the anus. These gills, which can be distended at will by the insect, by means of blood pressure, are apparently inadequate for use in any but rapidly flowing water which contains plenty of oxygen, for if the larvie be placed in a jar of still water very few will survive for more than eight hours, though life may be prolonged for two or three days by placing them in small numbers in Petri dishes containing only sufficient water to just cover them.

The form and size of the imaginal discs, or histoblasts, will here be described in detail as they are of especial interest in connection with the parasites.

The thoracic histoblasts are twelve in number and are very large and conspicuous in normal larvæ as they approach full growth (Plate I., Fig. 4).

The six discs to be found on each side of the thorax are the following:
I. Adult prothoracic leg histoblast-situated at the base of the larval prothoracic leg.
2. Adult mesothoracic leg histoblast-situated ventro-laterally on the mesothoracic segment.
3. Adult metathoracic leg histoblast-situated ventro-laterally on the metathoracic segment.
4. Adult wing histoblast-situated dorso-laterally on the mesothoracic segment This in the mature larsa is by far the largest dise and it oon comes in contact with the mesothoracic leg dise.
5. Adult halteric hintoblast This in the early stages is almost as large as the wing dise, but its grow th and development are very show and it soon disappears under the rapidly expanding wing dinc.
6. Pupal respiratory uft histoblat. This is situated on the prothorax and in it young stages hat the appearance of being quite homologous with a prothoracic wing. It, however, soon begins to take on a definte form, and the comparatively stout tracheal tubes can be seen growing and lengthening beneath the transparent cuticle till they become coiled up as indicated in Plate 1., Firs. +

It should be noted that this histoblast is not in the true sense of the word ant "imaginal" dise since the respiratory filaments are exclusively pupal organs, and have no equivalent structure in any adult. Their similarity to a prothoracic wing destitute of the wing membrane is of interest. A few days before pupation this "pupal" histoblat begins to darken. Pigmentation commences at the apex of the folded tubes and slowly works backwards toward the base when the dise takes on the appearance shown in Plate III., Fig. 8b. Later, immediately prior to pu-
pation, the cuticle over this disc ruptures and liberates the fully formed and now functioning filaments.

The growth of these various histoblasts causes the thorax to swell considerably, thus giving the body the appearance of being constricted in the middle.

Internally there is comparatively little tissue. The abdomen contains the alimentary tract, and the much elongated salivary glands which lie normally in a ventro-lateral position with regard to the alimentary tract. The sexual organs are small and not easily found even in serial sections. The remaining portions of the body cavity are filled with blood plasma in which is stspended a quantity of fat body, mainly collected near the apex of the abdomen and causing this region to become slightly swollen. As the larver mature this fatty tissue very materially increases, and when dissected out, is of a stringy nature.

Metiods.

Most of the larvae were killed as soon as they were brought into the laboratory; but a few of the more heavily parasitized ones were kept alive in running water by covering the mouth of a jar with fine netting and introducing a piece of rubber pipe into the jar, through which tap water was run. In this manner specimens were kept alive for several days.

The following killing fluids were found to be the most satisfactory among several tried:
I. Hot Water.-Water was just brought to the boil when the larve were immersed and allowed to cool in the water. This method was most unsatisfactory from a histological point of view, but it had the advantage of leaving the skin as transparent as in its normal condition. It was also possible to dissect lariae thus killed.
2. Gilson's Fluid.-This was used hot as described above and gave good results, but had the disadvantage of making staining with the hematoxylins difficult.
3. Kahle's Fluid, consisting of 30 parts water, 15 parts 96 per cent. alcohol, 6 parts formalin (40 per cent.), I part glacial acetic acid. This fluid has been recommended by W. Kahle (rgos) and proted to be superior to Gilson's fluid both for
fixing and staining, and in the end was exclusively used. It was also used hot.

The chief advantage of both of these fluids was that. besides giving excellent histological preparation, they caused the histoblasts to turn milky white so that their position and form could be readily observed immediately after the specimens were killed.

Staining.-Heidenhain's iron hæmatoxylin combined with orange C was almost entirely used as it gave the best clifferentiation, though staining was rather slow. Replacing orange G with eosin accelerated staining but differentiation was less precise.

A number of larsar were placed in a jar of water and left over night. The following morning 1 was surprised to see several white worms moving about at the botom of the jar. It was evident that these had come out of the Simutiam lartar, so I went out to a ripple where the larse were particularty ahoment and examined the colonies on several stomes. I then noticed the large size of many individtals, and on examining theee I fommed that many of them had a worm coiled up within the abdomen (Plate I., Fig. 5). When a quantite of materiat "as bronght inte the laboratory it was fomed that these parasitized larvar were much more sluggish than the ir heathe companions, which rapidly explored the jar in which they were confened, with their peculiar loxping gatit. The parasitized individuals, however, wemed much less concerned as on their new surroundings, and many of them were soon motionless, standing upright on the bottom and sides of the jar with their rakes expanded, ready to catch any fored which might float their way. Here is a possible explanation of their larger size. Owing to their curions form of feeding it is evident that the more sluggish an individual is the more frod it can obtain, and should it grow but a little larger than its companions, it will reach above their innumerable outstretched rakes, so that its food supply will be very materially increased.

It must not however be taken for granted that all parasitized larva were larger than their healthy companions, for some remained quite small, whereas many of the larger larsa showed no
signs of worm parasites. As a general rule, however, the largest larvie were found to contain one or more worms coiled up within the alodomen. One would naturally expect this rule not to be very constant, if, as conjectured, it is simply due to a more sluggish temperament and increased appetite on the part of the parasitized larve.

A case of a Mermis parasitizing ants was described by Professor Whecter ('o o_{7}) and here also he noticed a great increase in size of the host due to a greatly increased appetite during the larval stage.

A number of the worms were dissected out and sent to Professor T. H. Montgomery who pronounced them to belong to an undetermined species of Mermis.

Retardation of Development of the Histoblasts Due to Mermis.
On making a closer examination of the parasitized larve a far more remarkable effect than that of increased size was noticed, for it was found that the presence of Mermis parasites, no matter in what numbers, has a direct effect on the development of the histoblasts. In a normal larva of about $10-10.5 \mathrm{~mm}$. which is the maximum length, and is attained immediately prior to the blackening of the respiratory filament histoblasts, the latter are quite large and owing to their white color readily visible to the naked eye; especially when the larva has been killed in Kahke's or Cilson's fluid (Plate II., Fig. 6). If a parasitized larva of the same, or greater, size be examined no trace of the histoblasts can be discovered with the naked eye, and can only be detected with difficulty under a dissecting lens. Under the low power of a compound microscope, however, they are seen to be represented by small white traces of the organs which should at this time be far advanced in development (Plate II., Fig. 7). A close examination fails to reveal any differentiation of these retarded histoblasts into the component parts of the adult, or pupal, organ.

The parasitized larva rarely develops beyond this stage, though I have observed specimens which were turning reddish brown, and contracting slighty as a healthy larva would, shortly before
maturation. In some cases, even, the rudimentary respiratory filament histoblast begins to darken in color.

I examined numerous specimens from the same stream at Forest Hills, and, with slight variations in intensity, they all showed this nearly complete suppression of the imaginal discs. Some weeks later I chanced to pass a small stream at Norwood, about seven miles from Forest Hills, and secing Simulium larree present in small numbers, I took nine specimens from the rocks in orler to see whether the species was identical with that common in our streams at Forest Hills. They proved to belong to the same species, namely, Simulium hirtipes, but I was much surprised to find that here also the Mermis parasite was much in evidence for of the nine -pecimens taken, six contained the worm. The efferes howerer in the ere ofecimens were not so marked as in those fround mearer home, for four of the six had turned brown and ahthough the histohlasts were much smaller than is normally the ease they were readily visible th the naked eve. Undoubtedly, howerer, maturation was imposible, for even should the laria manage to pupate it would soon die for want of oxygen, since the respiratory filaments were but half formed.

In a third locality; the Stonybrook Reservation near Forest Hills, a different yevecien of larsa was found. Profesoor Johannsen states that this lama is quite few to him and may te the undescribed larsal stage of S. bracteatum, which necurs, frequently: in this State, but as I found only adulto of hirtipes it was impossible to contirm this supposition. These larsat were, however, also foumd in sulter from . Mermis parasitism, but to a much less extemt than thase of S. hirtipes. The effects on the host were, however, as one would expect, identical with those on hirtipes, though the iucreased size was not so evident.

A large number of larsir were measured, cut open and the worms removed. It is interesting here to note that even in fixed specimens where the tluid had caused the skin to become opaçue, the presence or absence of worms could in ald cases be determined with certainty by a glance at the histoblatits. The worm, it should be noted, did not cause the abdomen to swell up or become distorted to any appreciable degree.

I few selected results shown lye cexamination are appended:

	1 engit.	Lolor of Larva.	Histoblasts.	$\begin{aligned} & \text { No of } \\ & \text { Worms. } \end{aligned}$	Size of Worms.
1	10.75 mm .	Gray:	Minute.	12	Av. $75^{-1} \mathrm{~cm}$.
2	11.50 mmin .	Gray:	Minute.	1	2.75 cm .
3	11.0 mm .	Cray:	Minute.	1	3.00 cm .
4	11.0 mm .	Gray:	Minute.	3	1.3, 1.5, 1.5 cm.
5	10.5 mm .	Brownish.	Minute.	I	3.00 cm .
0	9.0 mm.	Gray:	Quite small.	3	.9. 1.3. 1. 5 cm .
7	8.5 mm,	Brownish.	Large.	0	
8	10.5 mm .	Gray:	Large.	\bigcirc	\square
9	8.0 mm.	Brownish.	Large.	o	
10	7.0 mm .	Brownish.	Large.	,	
11	8.5 mm.	Gray:	Large.	o	
12	11.0 mm .	Gray:	Large.	-	

From this table it will be seen that when there is but one worm in a host it attains a length of about 3 cm . during its parasitic life; that is, roughly about three times the length of the host itself, since the average length of a parasitized larsa is $10.5-11 \mathrm{~mm}$. It will also be seen that in one case as many as twelve worms were removed from a single host, and that in this case they all remained small, owing doubtless to insufficient food supply. In other instances, however, where several worms were present in one host it was noticed that one had attained almost to the normal size of 3 cm . Whereas the remaining worm or worms were less than 1 cm . in length.

The larval measurements showed that parasitized larvx average about 11 mm . (Plate III., Fig. $8 a$) whereas mature, and therefore somewhat contracted, larva, average some 8-8.5 mm. (Plate III., Fig. sb), though a few are abnormatly large.

Life History of the Worm.

As yet nothing is known of this except during the latter part of the life in its host. In all probability the exgs or young worms, are caught as they float down stream by the outspread larval rakes and are swept into the mouth, passing into the alimentary tratt through the walls of which they bore their way till they enter the body cavity. It should howerer be noted that no scars or hypertrophy of the wall of the alimentary tract were noticed in several serial sections made of parasitized larvar. The alternative hypothesis is that the larval worms bore into their hosts through the thin cuticular covering of the ab-
domen. That they should be present in the Simulium eggs is hardly possible, and this hypothesis can be with safety rejected.

Either of the former hypotheses offers a possible explanation for the variation in development of the histoblasts of parasilized larve taken from different streams, for in the case of those taken at Norwood where the dises were of a moderate size, the worms may not have entered the body cavity till the discs were somewhat developed. Then again where one worm has grown to near!y the normal size of 3 cm . Whereas other worms in the same hose have remained smatl, it is probable that the large worm entered the body cavity some time before the others.

Figure g, Plate IV., which is a drawing of a median Iongitudinal section of a parasitized larra, shows the vemat position of the worm with regard to the alimentary tract, though it will be seen that the mesemeron hats been somewhat pu-hed to one side by the coiled paratite. It will alow le eeon lẹ comparing lïg. o, Plate IV., with Fig. 11, Plate III., that the parasitized harsa has much less fat lody than that of a healdẹ individual at abont the same stage of growth.

Another effee of the hom is that apporently the sextal organs dor met denchop in parasitized larat. These are not eatily seen in a healthy Simulimm larva, at the are very small, lom they can ustally be fomm in a good aerich of aections: in sections of parasitized lars.e 1 hase been entirely mable to locate them.

Otherwise the parasite appears th hase no effect on the intermal organs of the host, with the exception of di-plating the spinning glanels, the largest pertions of which normally lie in the perition later oferpied be the parasite. Nthought they may be of displaced as whe dorad of the alimentary tract (Plate N I . Fig. 9, b) their functioning is in no "aty impared, since these larsae spin quite as moms silken thread ats do these which are uninfested.

The Mermis proldably feed directly on the beod plasma and fatte tissite of the howe

As the lana reathe maturity the contaned worm beomes very restles. and if a living larsa be placed umber the low power of a microsope in a cell slite the mowements of the worm can be easily obersed. One thos wateded for about half an hour was seen to explore the hypodermis of the host, evidently attempting
to find a place of exit. The head was "kept constantly moving over the internal surface of the abdominal hypodermis and was even sometimes thrust far into the thoracic region. The movements appeared to cause the host great pain, especially when the thoracic region was visited. Finally after the entire worm had been several times twisted round in the body the head was pressed against the junction of the third and fourth abdominal segments and a hole was quickly made through which the worm slowly emerged. The worm, measuring 3 cm., took in all 27 minutes to disengage itself after puncturing the skin of its host. At first the operation was very slow and the constant writhing and turning of the host impeded rather than aided the movements of the parasite. When about 50 mm . were exposed the head was twisted around the body and the remainder of the worm was more rapidly forced out, finally becoming detached from the host in a tightly knotted mass which soon straightened out. The larva meanwhile rapidly shrank, and in about half an hour was dead. The worm apparently can lease the abclomen at ahmost any point, though the thin junction between two segments is usually chosen. It is probable that the death of most parasitized larve is directly due to the escape of the worm, which in all observed cases occurred some time before maturity.

On raising leaves in the bed of a stream a little below a large colony of Simulium larva it was found that they had under them several of these white worms. This year most of the worms had escaped by the beginning of May, and have since been lost sight of, though while examining a stone microscopically for a second brood of Simulitm eggs, on May 29, one or two minute worms were seen, which may havẹ been young Mermis. No Simulium eggs could be observed. It a still later date, August 3, a full grown, though dead, Mermis was found under a stone in the bed of the stream.

Percentage of Larve Infested.

Several leaves covered with larvae were taken from a stream in Forest Hills for the purpose of determining the percentage of paranitism.

These larvae, which represented the species Simulium hirtipes,
gave the following results: Number of larve present $17+$; number of parasitized larse fl^{1}. This means that in this particular locality about 23.5 per cent. of the larve would be unable to mature on account of the Mermis parasite.

The species living in the Stony Brook Reservation was found to be parasitized only to the extent of some 3^{-+}per cent. A few S. hirtipes were also present in the same stream and were parasitized only to the same extent, so it is probable that this smaller attack was not due to the host's belonging to a different species.

Caľae of the Retardation of the Histoblasts.

In order to arrive at some definite conclusion as to why the histoblasts of a parasitized larra should not develop normally, it will be of adrantage to review briefly some of the theories which hase been adtanced to explain the normal development of these dises, and at the same time in consider the facts which have been brought to light be the study of several cases now on record in which the discs have developed wibh abnormal rapidity, thus proxlucing larva which pereses characters that mormally do not make their appearance until the pupal or adule condtion is reached. This ahmormal condition has been termed "prothetely" by Rolbe (1003). For the abnormally retarded condition as produced in the Simuliam larsee by the presence of Mermis I should like to suggest the word "metathetely." "
The earlies report of prothetely was made by Heymons ('ng). In this cane larvie of Tencbrio molitor L. were found which, When mature, proved to tee abormally developed as follows:

1. The meso- and metathorax possessed expanded lateral portions of the tergites, which resembled the wing-pads of the pupa, though they were not folded under the body as in the latter, but were directed backwards.
2. The antemar had additional incompletely segmented joints, thus approaching the ri-jointed adult condition.
3. The abdominal tergites were modified so that they resembled the tergites of the pupal alxdomen.

These larse were raised in the mealworm cultures of the
1 IIpoteiv, to run before, and rtionos, the completion.
a Meta日eiv, to run behind, and tédos, the completion.

Berlin Zoölogical Institute, but no statement is made as to whether conditions during development were quite normal. Heymons concludes his paper by suggesting that the abnormal development described above is due entirely to an accelerated development of the histoblasts, but makes no suggestions as to the cause of the acceleration.

In 1903 Kolbe reported and figured an interesting case of prothetely in the larva of Dendrolimus pini L. He received the larva when in its fourth moult, at which stage it had the following characters:

1. The larval antenne were replaced by elongate antenne showing simple primary division into about seven segments.
2. The larval thoracic legs were replaced by three pairs of jointed legs possessing all the adult parts, namely, coxae, trochanters, femora, tibiae and tarsi.
3. The mouth parts were modified.

Kolbe points out that all these organs were in an immature adult, or true pupal form, thus showing, it would seem, that the development was quite normal, but simply accelerated. Wimneguth succeeded in breeding from a similar larsa an adult which hatched as a small male that was apparently quite normal except for its dwarf size. These abnormal larve were produced from an artificially hatched generation kept indoors and from parents which did not hibernate.

Hagen ('72) gives an account of silkworm larve obtaining wings before pupation, which condition was accompanied by other abnormalities as follows: The head was small and had two small facetted eyes, and the thorax became modified but the abdomen remained in the normal condition of a larsa in the fourth moult. The fore wings were long and narrow and rather more gray than usual, while the hind wings were short and narrow. As this anomaly occurred freguently and was therefore liable to be of economic importance, its causes were insestigated by Majoli who came to the conclusion that it was due to the larvae being kept at a temperature above the normal.

A case similar to that of Heymons was described by Riley ('os) from another colcopterous larva, Dendroides canadensis, which was bred by a student at Cornell Lniversity.

It will be seen from these cases that in every instance they occurred in artificially reared larvæ, and it is probable that the prothetely was due to an increased temperature, perhaps with the aid of abundant food, in some way hurrsing on the development of the histoblasts.

This fact suggests that the histoblasts may be caused to develop, though at a much slower rate than the larval organs until pupation, by some enzeme secreted loy the insect and that they can develop only a fast as this stimulant is formed. Its supply thus acts as a regulator. An increased temperature is in most cases adsantagerons to enzyme action and in this case it is probable that it either catsees more of the enzyme to be secreted or stimulates the action of the amoum already available.

Dewit\% ('05), after numeroun experimente on retardation and acceleration of develonment and pupation arrised at the following conclu-ions: Devilopment and pupation are cotused beg contones which are not very evident in the early larval stages. They, however, increate with the grow of of the larsa until its pupation, at which periox they are ot their maximom strength; they then begin to diminish, till at the end of the pupal period their action emtindy ceaso. He alos states that the enoyme action can be hime ered be the preance of another beds: and that by obtaining ans ens the of an increaned strength before pupation development con be abmomally welerated.

It is evidemt that the cells of the histoblate are camsed to develop, be a different stimulu- from that which catees the development of the larval organs, for in the former cate development in very stew during the lartal stage, when the latter organs are developing very rapidly, and it is mily when these have reached their limit of development at pupation, that the adult organs begin to develop with ans rapidity:

This suggests that there mas be in the insect body two sets of enzomes which one mas term "larval" enzomes and "imaginal" enzymes. These are sufficiently different so that conditions which catuse the acceleration or retardation of one of them need not necessarily have any effect on the other. If this be so, one has a probable exphation of prothetely and aloo, as I shall attempt to show in the following paragraphs, of metathetely.

At first sight one would suppose that the retardation in development of the histoblasts in parasitized Simulium larve is simply due to a lack of proper nourishment for these organs, since the larva, besides having to supply the requirements of its own developing larval tissues, has also to supply the demands of its fast-growing parasite. This may be true to a certain extent, but later observations, when another parasite is also present, indicate that there must be some other more potent factor wheh accounts for this inhibition. This second parasite is a Spor ozoön which, owing to the vast numbers in which it occurs in a single host, is far more bulky than the worm and must, one would imagine, make far greater demands on the resources of its host. In this case, however, the histoblasts are usually unaffected in size, though in many cases they are distinetly smaller than mormal. Two individuals, however, were seen in which the histoblasts were minute. On dissection it was found that, in each case, a small worm measuring only some 7 mm . was living embedded in the mass of spores, and it was evident that this minute worm was responsible for the retarded condition of the discs, even though it had evidently absorbed very little nourishment. One must, therefore, in all probability look to some toxin secreted by the worm as the cause of the inhibition of development in the discs.

The researches of Verson and Bolle, as quoted by Fischer ('o6), proved in the case of lepidopterous larve that in their early stages their body fluid is alkaline and that this alkalinity decreases as the larva matures. This would suggest that an alkaline condition encourages the growth of larval tissues whereas acidity, or the alsence of alkalinity, permits of the development of the adult organs. Hence the histoblasts would develop but slowly till the larvie are nearing maturity when the decreased alkalinity of the blood allows the "adult" enzymes to stimulate the cells of these dises to rapid division. I have been unable to find any account of the excretions of Mermis or of closely related Nemathelminthes, but should they be proved to have an alkaline reaction the probability of the above contention would be very greatly strengthened, for here we should have a case of the alkalinity of the system being maintained in maturing larva, and thus preventing the normal, though slow; development of the
adult organs, without affecting the larval organs to any great extent, except in so far as they are kept well supplied with alkaline fluids and are thus capable of developing to their utmost extent. This would account for the somewhat larger size of parasitized individuals.

It may be however, that the Mermis does not actually secrete an alkaline substance, but brings about an increased alkalinity. in the body of its host by absorbing whatever acids are formed in it. The prolability of this being the true condition is increaserl by the fact that closely related worms live in aced media, such as vincegar or sour paste (Anguillula aceti Chrlog.), which would print to the fact that the worm requires, and absorbs, acids during its development. In either case the effeet on the host would tee the same in that there in a reduction in the activity of the acids which appears whe tonemtial to the development of the hiscoblast Whether thin is the true explanation or not, it is certain that the presence of the worm does have a direct inhibitory dfeet upon the development of the imaginal organs, but does not have a similar effeet on the larabl tissues.

A suppression of pupal and adult organs will naturally be of adramtage to the para-ite for two reasoms:

1. Nouribhment is not requirel for buiding up these tissues and therefore more will be asabable in the bedy cavity of the hosit.
2. The maturity of the hoat will be deferred thus giving the parasite a longer life, should it require extra time for development. In mose of the observed cases, however, the worm killed its host, beyerging lefore or at about the same time that the uninfested larvar were pupating.

A similar though lens markeal cabe of metathetely due to parasitism ly Mermis has been deacribed and figured by Mrazek ('os) in the quecus of a European ant Lasius ulienus). In this case the parasitized larsie matured and produced adult ants which were normal in all external charaters with the exception of a great reduction in the size of the wings. Through the kindness of Professor Wheeler I have been able to examine some similarly parasitized specimens of a closely related American species (Lasius neoniger) in order to see whether the development of the
legs had been in any way affected but a careful comparison of the measurements of the legs of the parasitized ants with those of healthy specimens failed to reveal any inhibition of their development on account of the Mermis, although the wings, which in normal ants measured some $10-11 \mathrm{~mm}$. in length were reduced in the parasitized individuals to $6-6.5 \mathrm{~mm}$.

In the case of Simulium larve, as before stated, the development of the legs also is inhibited by the presence of Mermis, though comparative measurements of the wings and leg histoblasts in healthy and parasitized larva show that whereas in the former case the wing histoblast covers about four times the area covered by that of the mesothoracic leg. in parasitized larve these histoblasts bear a relation to each other in size of about 2.5 : , showing that the wing histoblast suffered a greater inhibition in development than did that of the leg.

A further interesting case of Mermis parasitizing ant larva was described by Wheeler ('10), in which case the worker larva of Pheidole commutata were parasitized, and resulted in the adults of such larve not only possessing all the normal "worker " characters perfectly developed, but owing to excess of feeding on acrount of their constant hunger these " worker " larve developed, when mature, characters such as the ocelli which are normally only found in the sexual ants.

A Sporozoön Parasite of Simulium Larve.

While dissecting out worms from a batch of larva taken on March 30,1 chanced to cut open one larva which from the whiteness of the abdomen I took to contain a worm, but was much surprised to find that the body cavity was closely packed with a white substance which had the appearance of cotton wool. A little of this substance, however, when smeared on a slide was seen to be composed of countless organisms as illustrated in Plate V., Fig. 14. My first impression, very naturally, was that these were spermatozoa, which they resemble very closely in general outline. It was, however, very difficult to imagine to what possible organism these spermatozoa could belong. The larva itself could surely not produce them; but if not the larsa what then? The only explanation seemed to be that they were
formed by one of the worms, which could not then be Mermis but must be a new form closely related to Allantonema or Spharularia, in the females of which the uterus becomes protruded and is finally many times the size of the original worm.

I naturally visited the stream in order to obtain more specimens suffering from this disease, only to find that a quantity of oil which had been flowing down the stream for some days past had succeeded in killing off all the larve in that neighborhond. It was therefore necessary to find a place further up the stream, abore the contamination, where the larve were living. Aloout half a mile's walk led to such a place, situated under at stone arch, in which the lartae were present literally in thousands. They formed great manco conering the whole surface of the rock:. An examiation of a few rock- soon showed that the Mermis was very plentiful here, but it was some time before I found specimens with the curious white abdomen- for which I was searching. I chanced, howeser, to pull 1 p) a piece of water weed that was floating in a swiftly ruming - w irl and here 1 found guite a number of individuals, some show ing immene aldeminal swellings due (1) the parasite. Oncamining afen small specimens I found that the parasite was more mumerom- among them than among the larger indisiduals; a doser examination of the rock showed that these andall pharaitized individuals were quite commonly scattered amone the larger heathy cmes. I guantity of material was taken back of the latoratory on be sudied on the same lines at that adopted for the Mermis parazite.

External Emfect on the Laria.

The first effect noticed in badly infented larsat in the immensely distended abdomen. In some cates as in that illustrated in Plate V'. ligg. 12, the apex of this region of the body was three to four times its normal size. Unlike the Mermis, this parasite is not confined the thentrat portion of the body but entirely surrounds the caudd extremity of the mesenteron, and small detached colonies were not infrequent in the thoracic region. The Malpighian tubules, however, can usually be seen on the surface of the mass and are plainly visible through the tightly stretched skin, which is quite transparent in places and appears to be on the point of bursting.

The length of the larvae next chaims attention. No larva containing this parasite was found to be exceptionally large; whereas, as before mentioned, many were extremely small, measuring some 2.75 or 3.5 mm . at a time when all normal harve measured some 9 mm . or more. This may possibly require a similar, though opposite, explanation to that suggested on page 28I to account for the large size of the individuals affected by the Mermis.

In confinement these small specimens were extremely restless, they were continually twisting about and moving over the sides and bottom of the jar with a peculiar jerky movement. The larger, and more heavily parasitized, larve on the other hand were more sluggish though not more so than the healthy larsæ.

The effect of these parasites on the histoblasts is very hard to state with any certainty. Fig. 13 is an illustration, made with a camera lucida, of the histoblasts of a nearly mature individual. In this case the parasite was confined to the abdomen. It will be seen that the dises are but half developed (compare with Fig. 6). In other cases, however, the development of the discs was not, so far as could be seen, affected in any way till pigmentation of the respiratory filaments commenced. Then it was noticed that the entire histoblast only turned a slate gray color instead of blackening at the apex of the filaments and fimally over the complete disc. In other cases, however, the discs entirely blackened in a perfectly normal manner.

When colonies of parasites are located in the thorax, as is not infrequently the case, the histoblasts are materially decreased in size, while in the very small specimens development appeared to have been arrested. This is hardly surprising. My general conclusions were that the parasite affected the histoblasts but little, though the larver rarely advanced so far toward maturity that the respiratory filaments became pigmented. It should be noted that the power of spinning silk was in no way affected by the presence of this parasite.

Nature of the Parasite.

While visiting other localities I made numerous observations on the larver to be found in the streams, and was much surprised to find that species of the parasite were extremely common and
that in almost every brook risited some of these conspicuously distorted individuals were to be found. On making microncopical examinations 1 observed that the organisms taken from different localities varied very much in form and apparently represented different species. A list of these different forms and the r hosts is appended:

1. Oroid borlies bearing a "flagellum" -like organ varying in length from about that of the "body" to three times its length (Plate V'., Fig. If). Host: Simulium hirlipes. Habitat: Forest Hills and Blue Hills, Mass.
2. Bi-annolated onoid bodies bearing a "flagellum," which is never much longer than the "body" (Plate V., Fig. 15). Host: Simulium species undeacribed. Habitat: Stony Brook Reservaton, Mass.
3. Oroid boxdies having the "flagellum" replaced bye a transparemt thatened dise (IPlate V... Fig. 16). Host: Simulium species malesaribed. Hahitat: Stons Brook Reservation, Mass.
4. Simple owed bodies destime of all appendages (Plate V., Fig. 17). Host: Simulium apecies undeseribed. Habitat: Stony Browk Reservation and Blac Hills, Mass.
'The following charatere were coumono to all of these organismls:
5. They were all smalar in size.
6. L'inder the highest power of the microscope they hat a fant olive greeniols tinge.

When in a fred comblion abondately no internal details were visible and in specimens which had been killed, fixed and stamed very litele mure could he seen. In many" of the first or "spermatowoid" "ype a darkened central area inticated the presence of a very large muclens, while a smaller dark spot just before the base of the fakellum might be taken for the mucteolus.

Mans of the "simple ovoid" (ype although but slightly" staining, showed a great shrinkage of the internal substance; otherwise nothing could be seen in them. The specimens with a flatened dise, and those bearing two annuli and a flagellum, also showed practically no differentiation. Methyl green and various hiomatoxylin combinations were tried without success.

Besides these various forms, no two of which were observed
to occur in the same individual, another form of cell (Plate V', Fig. 18) was found in much smaller numbers, but possibly in some way connected with them, for it was seen in association with each form, but was not found in healthy larve. This cell, which varied much in diameter from but little more than the numerous "spores" to three or four times the length of their longest axis, was apparently globular in form, and in a fresh state was very transparent and could only be discerned with difficulty. The following characters, however, were seen. The substance of the cell was finely granular, and often contained a number of large transparent globules. When fixed and stained the only differentiation was that of a large dark mass, apparently the nucleus (Plate V., Figs. 18, a and b). In some cases these cells seemed to be dividing (Plate V., Fig. 18, c).

In the face of all these diverse types of cell, which live in precisely the same way, it is evident that the forms first found are not spermatozoa, and further the fact that the flagellum is replaced in one "species" by a flattened disc eliminates the possibility of their being Flagellates. It is therefore probable that one must look to the Microsporidia among the Sporozoa as the group to which these bodies belong. It is further noticed that many of the forms are very similar to those met with in the genus Glusea to which the well known pébrine diseave (G. bomby(is) of silk-worms belongs. One must therefore conclude that it is a pelrine-like disease, which is killing off a high percentage of the Simuliid larve in the neighborhood of Boston, though on account of the vast difference in structure and mode of life of the two hosts the life history of the parasite in the Simulium larva is very unlike that described by Pasteur ('zo) and Stempell ('og) in their work on the disease in silk-worms.

Life History of tie Parasite in Its Host.

As in the catse of Mermis, I know very little about this, since 1 did not disenerer it till the final stages of the larva were being approacherl, and in every instance but one it was apparently in exactly the same condition, namely, the "spores" were all formed and were simply awaiting the death of their host and its reabling decomposition to escape into the water.

The one exception, however, was that of a larva found on April 17. It was one of the first discorered, in the abdomen of which could be seen, with a dissecting lens, large white bodies floating in the blood plasma. On dissection these bodies proved to be rounded masses of flagellate spores, a few of which had become disengaged and were apparently moving about by their own impetus in the bloorl plasma. As, however. I have never on any subsequent occasion observed such a mowement among these spores I am inclined to believe that this was simply a Brownian mosement, which I have distinctly recognized in tater examinations. Though I searched carefully for other larsa with parasites in a similar stage I wä unsuccesoful.

In serial section- of paratized larver simitar efferts to those exhibited when Mermis is present, are noticed in that the fatbody in much reduced Plate IV., Fig. (w) and the sexual organs
 lature apparenty remained unathened. The parasite probably entere the hos through the alimentary tate for in all canes of infected latra at was found that the mesemeron was distorted in ome or more placesthowing distine hypertrophe as if the cell-had been badly irritated tout had healed ower agat often permiting the sporen to pase throush into the body catvity (Plate バ., Fig. 10, e). In one catse a mall colong of "-pore" was fomm inside the almember tate but it is quite po-ible that the ee had been recentl taken in with the water, ats parasitized harsid were constantly dying in the colony, and amy matcrial, flonting in the water such is liberated "spores," would be caught the the ecphalic fans of atill living lars.e.

In all recorded cases of Micropporidia paratites it has been noticed that the "spores" lise. at heat during their early stages, inside some bedy tissue of the host. An example of this is 10 be found in pebrine of silk-worm larke, in which case the spinning glands are the main seat of attack. It must be horne in mind, howerer, that an attack mpen these organs in the larea now under consideration would, in all probability, result in the carly death of the host, for it is only mean of the much strengthened silk threads that the lartio is conabled to maintain in rapid streams the perpendicular pesition which is cesential to ubtaining forod,
while at the same time the larva has to depend to a large extent on these threads for retaining any foothold on the rocks, for when moring its position, the adhesive dise of the proleg frequently loses its grip and the larva is washed clear of the rock. Very rarely, however, the anchoring threads, which are always present, break so that the larva is able slowly to draw itself once more to its support. Sections of the Simulium larva disclose the fact that there are very few other tissues in the body. The muscular system is much reduced, and the only tissues available for attack without rapidly killing the host are the fat-body and the sexual organs, and I am under the impression that it is the latter which are usually the original seat of attack. In frontal sections of a very young larsa taken during March, only one testis could be found, but on the other side of the body a small mass of minute cells, taken at the time for small onocytes, was situated a little back of the normal position of the missing testis. The cells are too small to show any structures but it is possible that this is a diseased testis to which the spores made their way as soon as they entered the body cavity. Later sections also show traces of a very thin membrane investing the mass of "spores."

I kept a large number of diseased larsa in running water, hoping to see some of them pupate, but in every case they died, and soon liberated the spores, whereas many of the healthy larve, which were approaching maturity, pupated in captivity. It is thus evident that heavily parasitized larva never pupate, but die in the stream, liberating their countless spores in the water. What happens to these spores I have been unable to ascertain. Larve were allowed to die in distilled water and the liberated organisms were examined at intervals, but though they strongly resisted decomposition they never showed signs of movement or altered condition. Sections of pupre and adults obtained from badly infested localities failed to reveal any cases of the disease being carried beyond the larval stage. It is therefore probable that the disease is not hereditary as is the case with pébrine, and as before stated it was seen that the presence of this parasite, in every case examined, apparently resulted in castration of the host. It is, however, possible that among the vast numbers of larver a few were only slightly parasitized and did not have their
sexual organs entirely destroyed. Such individuals should be capable of pupation and might in that way carry the disease over as in the case of pébrine. An examination of several hundreds of larve did not reveal one in which such a condition was possible.

Were there overlapping generations of larve the maintenance of the parasite could be more easily understood, but the spring brood pupated and hatched during the first half of May; and there are not at the time of writing any signs of more eggs being deposited on the rocks. It thus seems that there must be a seconclary host in which this parasite passes the summer. ${ }^{1}$

The Percentage of Infested Larvee.

The number of infested larvae varied to a great extent in different streams. In the part of the stream in Forest Hills where the parasiten were firet noticel, lens than I per cent. of the larsar were parasitized, half a mile further up the stream a little under fo per cent. were infested, while in the Stony Brook Reservation where two tepes of "spore" " were present among the parasitized larve, between 70 and so per rent. of the individuals were to be seen with the immensely distended and whitened abtomens which proclamed them to be suffering from this foral diaceate.

It will thus be seen that hould thin disease ugether with the previous! deacribed Mermis parasite, prove to exist as abundantly in other localition as it has during the past spring in the vicinity of Boaton it muse be of considerable importance in the natural control of the black tlies which are sweh an annotance to man and beast, especially in more tropical regions, and if the supposed secondary host of the Sporazoün dhe not prove to he a fish or animal of any value it should be possible to infect streams where Simuliil larsae breed, and diminish their numbers very largely without the danger of poisoning the fish he applying oil or other substances to the water.

Summary.

Simulium lartae, which are found in vast numbers in small rapid streams aromd Buston, are seen to feed by standing per-

11 have since July 31 noticed isolated specimens of a different species of larva in one of the streams where the parasite abounded in the spring brood, but have not found any in which there were signs of the parasite being present.
pendicularly on rocks to which they are attached by a strong anal adhesive disc, and kept in position by silken threads secreted by the salivary glands. While thus anchored they spread out a pair of cephalic fans which act as strainers and collect small particles of food from the water. The head capsule is moulted independently of the body cuticle and exposes a new capsule which is at first white with a few dark spots on the vertex, but which rapidly becomes uniformly darkened all over. The thorax bears unusually well defined and large histoblasts of the imaginal wings, halteres and legs, and also on either side a histoblast of the pupal respiratory filaments, which by turning black when the larsa is mature becomes very conspicuous at this stage of growth. The larvae are infested by two parasites, namely a Mermis and a Sporozoön, hoth of which live in the body cavity.

The Mermis does not affect the larval development to any extent, except by slightly increasing its size, but it inhibits the development of the histoblasts to such an extent that pupation becomes impossible.

The embryo worms are probably caught by the cephalic fans of the larvæ and pass into the alimentary tract, through the walls of which they bore and live in the body cavity of the host till the latter matures. They then rupture the abdominal cuticle and pass into the water where they live a free life under stones in the bed of the stream. The number of worms contained by a single larva is usually onty one, but as many as twelve have been found. A single worm measures 3 cm., which is about three times the length of the host. In some streams 25 per cent. of the larvae were infested with this parasite. Parasitized larvae never pupate, but are killed by the worms when they escape.

The retardation in the development of the histoblasts is the opposite condition to that met with in prothetely which is usually caused by keeping larva at an abnormally high temeprature. This prohably results in an increased supply of the enzymes which cause these histoblasts io develop. The Mermis apparcnty excretes some substance which lessens the supply or action of these enzymes and leads to metathetely.

The Sporozoön parasite occurs in several forms in different
localities. All these forms, however, live in the same way and appear to be related to the pébrine disease of Lepidoptera. The body, especially near the apex of the abdomen, becomes much distorted and swollen on account of its interior being closely packed with a white wooly material which on dissection is seen to consist of countless "spores" of minute size. Such parasitized larvex are usually rather smaller than healthy individuals, but the histoblasts do not appear to be much affected. The parasite apparently enters the body cavity in the same manner as that described in the case of Mermis. Evidence of this is seen in a hypertrophied condtion of parts of the mesenteric wall. From here it seems to pass to one or both of the sexual urgans: which are destroved and become the muclei for the great mass of spores which eventudly fills the dhdomen. The parasitized larver in this case also were never obsersed to pupate but died when mature. The -poren are liberated by a rupture of the abdominal wall soon after the death of the hot and patso into the water. after which stage they have arot leen seen. Up to so per cent. of the larve in some streans were fonnd of contain large masses of this parasite but no case of slighte parasitized lama were ohereme. There ha been mesecond brood of simulium larrar this year, at it wouk secoll that if the paratite is to appear next gear there must be a secomdary hoot in which the summer is paract.

Dostsckipt.

The foregeng atcount of the Sporozoid paratite of Simulium hirtipes whe bery kindly reviewed for me by Professor C. N. Calkins, of Colmmbial linersity. From mounted specimens of the spones rent him he contirmed my opinion that these represent some pectes of Myasporideat, and drew my attemtion to a paper lẹ Lounis Léger ('9ち), which I had owerlooked because of its not being catalogued moder Simulinm in the cardo of the "Concilinm Biblingraphicum" in the ("ambridge library. In this paper a new species of Clugea paratitizing the larvae of the European Simulium ornatum in eleorribed as G. iarians. The notes on this species are in bricf as- follows: The abdominal region of the infested larta is greatly distended and contains large manses of a free parasite in the form of opacpue, milky white, irregular sats.

Some larvec contain but one mass whereas others contain two to four. The muscles are unaltered, but the fat body is much reduced. The alimentary canal always appears to be contorted. In only one case had the Microsporidea failed to sporulate and they then formed a swelling on the external intestinal surface. The sacs contain countless oroid, refractive spores, which, when treated with iodine, show a filament I5-20 times as long as their longest diameter. Spores of two sizes are present, the smaller measuring $+-5 \mu$, the larger 8μ. In a subsequent note written in collaboration with Hagenmueller ('o8) Léger states that the spores are sometimes present in a polysporic and sometimes in an octosporic arrangement. These authors also refer to a similar parasite in the larve of Tipula gigantea.

From the foregoing notes it will be seen that the disease which occurs in S. hirtipes is very similar in its main features to that described by Léger, and I do not hesitate to regard the organism responsible for its occurrence as a closely related form. Professor Calkins is inclined to consider the various forms I have described as belonging to a single species. For this I would propose the name Glugea polymorpha sp. nov. Fliture investigation, however, will quite possibly show that the various forms occurring in different localities are not all representatives of the same species, since numerous dissections of diseased larvæ showed that certain types of spores were peculiar to different localities even though present in two different species of Simulitum larve.

BIBLIOGR．APHY．

Dewitz．

＇os Untersuchungen über die Verwandlung der Insectenlarven．II．Archiv fulr Anatomie und Physiologie，1905，pp．389－ 415 ．

Fischer．

＇06 Ü̈ber die Ursachen der Disposition und über Frühsymptome der Raupen－ krankheiten．Biologisches Centralblatt，Bd．ぶલ゙1．．N゙r．13，14，15， 16.

Hagen，H．A．

＇72 Stettin．ent．Ztg．，pp．392－393．
Heymons，R．
＇96 Sitzungsber．d．Ges．nat．Fr．Berlin．
Kahle，W．
＇o8 Die Paedogenesis der Cecidomyiden．Zoologica，Heft 55.
Kolbe，H．J．
＇o3 Über vorschnelle Entwickelung Prothetelie）．Allgem．Zeitsch．für Ent． Bull．，8．No．1，p． 29.
Léger，L．
＇97 Cluge varians．C．R．Ac．Sc．Paris． 15097.

Léger，L．and Hagenmuller．

＇o8 Rech：sur lea Cilugeidées paravites des amimatux d＇eau douche．C．R．Ass．

Mrázck，Al．
＇o8 Myrmekologiché Poznamky＇，III．Acta．Soc．Eint．Bohemice，V＇ol．N゙．， pp．130－1．40， 4 ties．
Pasteur．
＇70 Maladie des vers à soie．1．（I＇ebrine．）
Riley，Wm．A．
＇o8 The Abnormal Apporance of External Wing－buds in Larse of Holometa－ bolous Insect．Entomological News，pp． $13^{6 / 5} 130$ ．
Stempell，W．

Wheeler，W．M．
＇o7 Tlie P＇olymorphism of Ants with an Account of some Singular Abnormalities due to l＇aravitim．13ull．Am．Wus．of Nat．Hist．，Vol．N犬．lll．，pp．r－93． pl．I．V＇I．
＇so The Fiffects of Parasitic and（）her Kinds of Castration in Insects．Journ．

Explañation of Plate I.

F1G. I. Prothoracic leg of a Simuliid larva showing the histoblast (a) at an early stage of development.

Fig. 2, a, b and c. Types of spotting on the head of a recently moulted larva of Simulium hirtipes.

Fig. 3. A single rake from the cephalic fans.
Fig. 4. Profile of thorax of a half-matured larva showing the histoblasts. a, respiratory organ histoblast (pupal organ) ; b, wing histoblast (adult organ); c, halterer histoblast (adult organ); d, e and f, pro-, meso- and metathoracic leg histoblasts (adult organs).

FIG. 5. Ventral view of a Simulium larva with Mermis parasites in situ.

Explanation of Plate if.

Fig. 6. Histoblasts of a healthy full-grown larva measuring 10.5 mm .
Fig. 7. Histoblasts of a larva parasitized by Mermis measuring 10.5 mm .

E. H. Btrickland.
(Patere

Explanation of Plate ili.

Fig. 8a. Average size full-grown parasitized larva of Simulium hirtipes measuring II mm.

Fig. 8b. Average size mature larva of Simulium hirtipes, measuring 8.5 mm . showing darkened pupal listoblast, a.

Fig. ir. Median sagittal section of a half-grown healthy larva to show the alimentary tract. b, the normal position of the spinning glands, which extend backwards from the pharynx on either side latero-ventrally to the alimentary canal, doubling back on themselves at about the point b, where one has been cut in cross section; c, the normal quantity of fat body which increases still more as maturity approaches; d, one of the pharyngeal glands. (This is not seen in an exact median section, as the two glands are narrowly separated medially.)

11

Explanation of Plate IV.

Fig. 9. Median sagittal section of a larva parasitized with Mermis sp. to show the somewhat displaced alimentary tract, and a, the coiled up worm; b, the displaced spinning gland, a short longitudinal section of which has been cut; c, the much reduced fat-body; d, one of the pharyngeal glands.

Fig. io. Median sagittal section of a larva parasitized with a sporozoön to show a, the mass of spores, a few of which are shown enlarged; b, the spinning gland; c, the much reduced fat body; d, one of the pharyngeal glands, and e, the somewhat distorted wall of the alimentary tract.

E. H STRICNLAVD

Explanation of Plate V.

Fig. I2. Dorsal view of a Simulitm larva with Sporozoid parasites in situ. Compare with Plate I., Fig. 5, which is normal in shape.

Fig. 13. Ilistoblasts of a larva parasitized with the S poro:oa measuring 9 mm . Compare with Plate II., Fig. 6.

Fig. If, A, B and C. Simple "flagellate" type of parasite, $\times 4,000$.
Fig. I5, A and B. Annulate "flagellate" type of parasite, $\times 4,000$.
FIG. 16. Type of parasite with "flagellum" replaced by a flattened disc, A showing surface view of disc, $\times 4,000 ; B$ showing side view of disc, $\times 4,000$.

Fig. I7, A, B, C and D. Simple ovoid type of parasite, $\times 4,000$.
Fig. i8, A. B and C. Other bodies found in small numbers among the "spores," $\times 4.000$. Many are larger in proportion than those illustrated. C shows one apparently dividing.

BIOLOGICAL BULLETIN

THE PERSONAL EQUATION IN BREEDING ENPERIMENTS INYOLNONG CERTAN゙ CHARACTERS OF MAIZE. ${ }^{1}$
\section*{R.IV'MON1 P'EARL.}

In the ummer of ryos some experiments in the crosi-hreeding of certain typen of maize were begun be the writer and his former colleague, Dr. Frank M. Surface. The prenem paper has to do with a part of the re-ulto obtained be crosing a white sweet variey (0^{0} parent) with a yellow dent variety (o paremt). Buth varieties uned were "pure," in the sembe that eateh bred true whe general type w which it belonged. The history of the sweed variety ued ha- been detailed in amother phace and need not be repeated here. The important theng to be noted at this time is that in it whole histors this sweet corn thed in the cress breeding expermemts had never been known on produce any but sädet (bugary) kernels of an exceptional degree of whitmess. ${ }^{3}$

The dent corn used in the experiments was als, of known himbers. I disenston of its history, and of the charatertistics of the corn has beengivenctewheres The comembal peint whe noted here is that during a long periox of gears it hat never produced ambthing exeep starchy kernels of a deep orange yellow color whem ripe:

1Japeri iron the Biological Laboratory of the Maine Igricultural Experiment Station, No. 21).
${ }^{2}$ Pearl, R.. and Surface, IF. M.. "Experiments in Breeding sweet Corn," Me. Agr. Expt. Litt. Ann. Report for 10t0. pp. 240-307.
${ }^{3}$. I pure chalky white or, put in the other way, the entire absence of yellow color. is an absolute essential of a high grade of corn from the packer's standpoint. The sweet corn here under discussion is regarded by expert packers as an exceptionally tine straik for their purpose.
'Pearl, R., "The Mentetian Inheritance of Certain Invisible Chemical Characters in Maiae." Zeitschr. f. Ihst.- k. Virerb.-lehte, Bd. VI., 1911.

The general results which follow the crossing of a yellow dent (0) with a white sweet (σ^{7}) maize are well known. l'ellowness of endosperm is dominant over "whiteness" of endosperm, and "starchiness" over "sweetness." Consequently the Fi kernels are externally indistinguishable (in fact as well as in theory) from those of the pure yellow dent parent. These F_{1} kernels planted give rise to plants bearing ears of which each should have four distinct kinds of F_{2} kernels which ought, by theory, to occur in the simple dilybrid ratin, 9 yellow dent, 3 white dent, 3 yellow sweet, i white sweet.

The present experiments ${ }^{1}$ entirely confirm in all essential respects this general Mendelian result. Certain novel points arose, however, in the course of the work, which led to the present investigation. These points may now be considered.

A large quantity of ears bearing F_{2} kernels was raised. These ears were well matured. This was indicated both by their appearance and by the way the seed from them germinated. One of the assistants in the laboratory, Miss Maynic R. Curtis, undertook the sorting and counting of these F_{2} kernels on an extensive scale. In this work the following situation immediately developed and was called to the writer's attention. While in general the F_{2} kernels fell without any doubt or difficulty into the four classes or categories, yellow starchy, white starchy, yellow sweet and white sweet, yet there were a number of kernels on each ear that were extremely difficult of classification. These kernels were, in short, intermediate in respect to their external visible somatic characters, and might, in the individual case, be put with equal propriety into cither of two classes. Into which class such an intermediate kernel would actually be put plainly depended upon the personal bias of the observer, rather than upon any peculiarity of the kernel itself. This result appeared to be of enough interest and potential significance to warrant a more extended and thorough insestigation of the matter. The present paper deals with the results of such a -tucly.

[^0]
Stathanent of Problens and Plan of Investigation.

The problems with which this work is concerned may be summarily stated as follows:

1. To what extent is the personal equation of the observer a significant factor in the Mendelian ratios described for simple experiments with cross-bred maize? In other words, how closelywoukd the different individuals of a group of competent biological obecreers agree in their classification and count of the same F_{2} material from a maize cross involving such relatively simpte and easily judged unit characters as color of endosperm, or chemico physical character of entosperm (starchy or sweet)?
2. Does somatic "intermediatenese" in maize imply gametic "intermediatenene"? In other worde, do Fe kernels which are intermediate somatically give rise wany different sort of progeny when phomed than do kernels which belong clearly and indubitably 10 ond or atoner of the well-lefined gametie clanses in F_{2} ? If they are trae "blends" in the Galtomian semee, they would artainly be experted as wod. If, however, they merely represent a phenememon canemtially like the incomplete or partial (anmatic) dominance as frepuently ofmersed in Mendelian work, it woult lee expected that their progeny would differ in no cesential pherticular from that ohtainal from somatically non-intermediate kernel having the - 1 m g game tic comatitution.

To tex thes quention the following plat was derised: Four
 of alonut mo bowhels of such rars, which in turn was at random sample of a whole crop which included a much harger mumber of buhbels. Each of thee four ear- was given an arbitary momber and was separately shedted, great care being taken to see that no kernels were leat. . It the kernels from each ear were preserved engether in a bag (or box). The shelling was done in the writur's baloratory in the presence of several workers. so that there can be no question whatorever, that all of the kernels in each one of the four parcels originally grew upon the same ear.

Three of the ears sodealt with (Nus. 8, 9 and ro) were normal in every respect. Ear No. It was slightly abmormal in the respect that a fungus had attacked some of the grains, giving them a slight pinkish tinge in addation to their own proper
color. This was especially noticeable in the case of the "white" sweet grains of the ear, because in a mature, dry sweet corn kernel "white" means merely the absence of any color (yellow or other). The grain is translucent and "not colored." Any extrancous color such as that arising from a fungus attack will - be the more evident. The same considerations apply to the white starchy kernels, except that here the starch of the endosperm gives the grain a positive white color.

The kernels from each of the four ears having been separately shelled and preserved as described. fifteen persons (including the writer) were asked to sort the kernels of each ear into the four categories, yellow starchy, white starchy, yellow sweet and white sweet, and then count and record (on blanks provided for the purpose) the number of each sort found. Four small vials containing typical kernels of each sort were given to each observer as comparison samples. The only instructions given the observers were:
I. To sort and count the material independently'.
2. To open and handle only one parcel of seed at a time.
3. Not to lose a kernel.
4. To count correctly, i.e., to make sure that the total mumbers of kernels counted tallied with the total numbers in the parcel, which numbers were set down on the blank for each ear.

Especial pains was taken to insure that no observer (with the exception of Nos. V'l., VII., VIII. and XI.) should know, in adrance of his count, the nature of the experiments which gave origin to the material, or the expected Mendelian ratio between the several classes of kerucls. No observer ${ }^{-1}$ was, of course, allowed to see the results of the counts by others until after his own had heen completed. In short every effort was made to insure in all possible ways that the counts tabled should be the umprejudiced, unbiased, independent and purely objective statements of the Opinions of a group) of competent hiological observers ats to the proper chassification of the F_{2} kernels from these four ears of maize.

We may next consider the observers who took part in this work. At the outstart the writer wishes to express his indebted-
${ }^{1}$ With the single exception of No. XII., and in this case it was some months later that his own counts were made.

Fig. I. Diagram showing the count of the different observers of each of the four classes of kernels for ear No. 8.
ness to all of those who coöperated in the investigation, and his appreciation of the painstaking interest and care given to the sorting and counting by all. Table I. gives the name, academic degree and official position of each of the coöperating individuals. For convenience of reference in the paper each observer has been assigned a Roman numeral.

Table I.
List of Observers Coöperating in the Present Study.

No.	Name.	Academic 1)egree.	Official Position.
1.	W. J. Morse.	M.S.	Plant pathologist, Maine Experiment Station.
11.	C. E. Lewis.	Ph.D.	Associate plant pathologist, Maine Experiment Station.
III.	G. E. Simmons.	M.S.	Prolessor of agronomy, University of Maine.
IV'.	M. E. Sherwin.	M.S.	Assistant professor of agronomy, North Carolina College of Agriculture.
V.	Wallace Craig.	Ph.D.	Professor of philosophy, University of Nlaine.
VI.	Raymond Pearl.	Ph.D.	Biologist, Maine Experiment Station.
VII.	Frank MI. Surface.	Ph.D.	Biologist, Kentucky Experiment Station. ${ }^{1}$
VIIf.	Maynie R. Curtis.	M.A.	Assistant in biology, Maine Experiment Station.
$\begin{aligned} & \text { IX. } \\ & \text { X. } \end{aligned}$	Lottie E. McPheters. Frank Pearl.	-	Computer, Maine Experiment Station. Farmer and practical corn breeder.
NI.	W. Johannsen.	M.D.	Professor of plant physiologỹ, ['niversity of Copenhagen.
XII.	I'. Boysen Jemsen.	Ph.D.	Instructor in plant physiology, University of Copenhagen.
Xllı.	Jenny IIempel.	M.Sc.	Assistant in plant physiology, University of Copenhagen.
XIV.	Gerda Dohlmann.	-	Assistant in plant physiology, U'niversity of Copenhagen.
XV.	Gilman A. Drew.	$\mathrm{Ph} . \mathrm{I})$.	Professor of Biology, Iniversity of Maine.

Certain points regarding this list of coifperators need to be discussed. In the first place it is obvious that any one of them (with the possible exception of $\overline{\mathrm{N}}$.) might in the ordinary course of his work carry out a Mendelian experiment with maize, either independently or in coöperation with someone else. If this were done and the results pulbished they would certainly be accepted loy the biological publie ats a precise and true statement of the facts regarding the material which was in the experimenter's hands. That is, if any worker in this list published a statement that a Mendelian experiment which he had conducted with
${ }^{1}$ At the time this work was done: Associate Biologist, Maine Experiment Station.
maize led to a ratio of，for example， $759: 2+3: 252: 90$ this statement would not be doubted or questioned．

In the second place it is worth while to consider the training． or lines of work with which these 15 observers have had to do． Of cix Nos．I．，II．，XI．，XII．，XIII．，XIX．）the training and work has been primarily botanical．Four of these（the Danish group．

Fis． 2 Diagram showing the come on the different observers of each of the four chasees on kemels tor car 소．as．

Nos．XI．w N1N．inclusive have had particularly to do with the data of experimemtal phant breding．in connection with the lorilliam and fundamental researches of Professor Johannsen． The training and special feld of work of five（Nos．V．．．VI．，Vll．． \＇III and XI＇．）of the observers has been zoollogical．Of these live three（Nos．VI．，VII，and VIII．）hawe had experience with the data and methods of invertigation in experimental breeding．

Thibe II.
Showing the Classification of the Kernels of Ear No. 8 by the Different ObsERVERS.

Ubserver.	Observers.					
	Classes of Kernels.					
	Vellow starchy.	Vellow sweet.	White Starchy.	White sweet.	$\begin{aligned} & \text { Total } \\ & \text { Starchy. } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { Sweet. } \end{aligned}$
Mendelian lixpectation.	299.25	99.75	99.75	33.25	309.00	133.00
I.	352	102	52	26	40.4	128
II.	322	49	82	79	404	128
III.	298	75	108	51	406	126
IV.	332	101	71	28	403	129
V.	305	101	86	40	391	141
VI.	313	100	90	29	403	129
VII.	308	86	95	43	403	129
VIII.	3 II	IOI	92	28	403	129
$1 \times$.	327	101	78	26	405	127
K.	308	92	95	37	403	129
CI.	311	97	92	32	403	129
NII.	313	99	91	29	404	128
NII.	308	97	95	32	40.3	129
SIV.	312	104	91	25	403	129
XV.	333	97	73	29	406	126
Totals.		$1,402$	$1,29 \mathrm{I}$	534	$6,0.44$	I.936
Means.	$316.87 \text {. }$	$93 \cdot+$	86.67	35.60	$+02.93$	129.07

Another of the five (No. V.) adds to the special training of the zoölogist that of the philosopher and psychologist, which by traditional standards, at least, ought to aid in the development of a discriminative judgment. The training of two of the observers (Nos. III. and IV.) has been agricultural. Further, both of these men belong by birth, early life and education to the "corn belt" section of the country, and are thoroughly and intimately familiar with maize. They have had experience in corn judging, which demands the appreciation of very small differences in ear characters. Observer No. X., while not a scientific student of breeding, has had successful practical experience in corn breeding, and is a careful observer. Observer No. IX. has been specially trained in biometric work in the writer's laboratory and has had considerable experience in measuring, sorting small variations out of mixed material, and similar work.

$$
\begin{gathered}
\text { Resclets. } \\
\text { I. }
\end{gathered}
$$

The results of the counts of the four ears by the different olservers are set forth in Tables II. to V. inclusive. Each of

1.16. 3. Dits rann hewing the ount of the ditterent observers of each of the

these tathes is arranged as follows: Columens are given for the four differem clatere of kernels, yellew starchy, yellow sweet, "hitestarehs and white sweet. Nao columns are given for total starchy and total sweet. The first row of cach table shows the Mendelian expectation for each chas. The following lines show the distribution of the kernels as reported by each of the fifteen observers.

The data for the color clases given in these tablen are shown graphically in Fige. 1 to + inclusive. One of these diagrams is devoted to each of the four cars used in the study. Each figure gives the photting of each observer's count of the four classes of kernets. The Mendelian expectation is plotted in each case as a dotted straight line and the mean of the results of the different observers as a straight line of dashes.

From these tables and diagrams we note the following point::

Table III.

Showing the Classification of the Kernels of Ear No. 9 by tife Different Observers.

Observer.	Classes of Kernels.					
	Vellow Starchy:	Velluw Sweet.	$\begin{aligned} & \text { White } \\ & \text { starchy. } \end{aligned}$	White sweet.	$\begin{aligned} & \text { Total } \\ & \text { Starchy. } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Siscet. } \end{gathered}$
Mendelian Expectation.	$237 \cdot 33$	79.11	79.11	26.37	316.44	105.49
1.	$23-$	7 I	89	28	323	99
11.	2.47	69	76	30	323.	99
11.	230	62	93	37	323	99
IV.	2.49	75	7.4	2.4	323	99
V.	227	81	8.	30	311	III
VI.	2.42	79	81	20	323	99
VII.	2.40	75	82	25	322	100
VIII.	241	78	82	2 I	323	99
18.	242	80	79	2 I	321	101
N.	238	82	8.4	18	322	100
XI.	2.45	75	78	2.4	323	99
N゙11.	2.13	77	80	22	323	99
Nill.	2.4	75	79	2.4	323	99
NIV.	2.46	77	79	22	323	99
NV.	246	75	77	2.4	323	99
Totals.	3,614	1,13 I	1,215	370	+.829	1,501
Means.	2.40 .93	75.40	81.00	$2+.67$	321.93	100.07

1. For no one of the cars is there entire agreement among all the observers as to the number of kernels falling in any one of the color classes. There is entire agreement among the observers as to the total number of starchy and sweet kernels in the case of two ears (Nos. Io and 11), leaving out of account the loss of one starchy kernel from ear No. 10 between the time when this ear was counted by olservers X . and XI. In the case of the other two ears (Nos. 8 and 9) there is some disagreement as to the number of starchy and sweet kernels. In no case, however, is the disagreement in regard to these characters so marked as that in respect to color characters.
2. The relative amount of divergence among the observers in regard to the distribution of the kernels in color classes is strikingly different for different ears. Ear No. 9 plainly bore kernels which were relatively easy to classify. The same was true of ear No. 10. On the other hand the kernels of ears 8 and if offered many difficulties in classification. But in the case of car No. It the difficulty was largely confined to the sweet kernels, there being close agreement between all the observers but one

Table IV：
Showing tile Clascification of the Kernels of Ear No．io by the Different OBSERTERS．

1 ＇nerver．	Clas－e－，f hernels．					
	$\begin{aligned} & \text { Sellow } \\ & \text { St.archy. } \end{aligned}$	$\begin{aligned} & \text { Vell. u } \\ & \text { Sneet. } \end{aligned}$	White －tia hy．	White －weet．	$\begin{gathered} 1 \text { tai } \\ - \text { t.archy } \end{gathered}$	$\begin{aligned} & \text { Tutal } \\ & \text { Sweer. } \end{aligned}$
Wew belaian expmo tation	$243 . .9$	1.0	81．0）	$2-0 \times 1$	124.011	1 \％
1.	251	5 I	85	45	336	96
11.	251	53	85			00
111.	2.4	51	8 S	45	336	90
I＇：	260	65	－ 6	31	336	96
$\$ & 245 & 65 & 91 & 31 & 336 & 90 \hline 11. & 251 & 75 & 85 & 21 & $33^{\prime \prime}$	90					
111	246	61	(2)	35	336	D0
1111．	217	75	$\therefore 9$	21	．336	06
$1 \times$.	2112	70	87	20	．336	06
ズ1	217	71	59	22	330	06
X1．1	250	7.3	55	23	3.35	96
X11．1	2.17	71	58	25	3.35	90
X11．1	217	76	48	20	335	00
※11：	250	74	45	22	3.35	ger
心以！	216	78	Su）	14	3.35	Oe）
Totals．	3.775	1.012	1． 3041	42 m	5.0 .35	1．4．11
Means．	240.00	07.47	8.80 .07	24.53	－ 335.07	－06．00

（No．1）with regard to the yeflow and white－tarche kernels of hhis ear．

3．The comse of the diserepancies between the comats of the sereral doserects is whions from the data．It will be seen at a glance from the diagrams that generally when an obserter＇s come of the vellowe stath kernels of all eatr，for example，deviated from the mean in exten，this same olserser＇s come of the white stathy kernels devitued from the mean in defect，and bey an amonnt aprosimately correponding the positive deviation in the other cate．In other word，certain kerncls，either starchy or sweed，which were called＂yedtow＂be one obserter were called ＂white＂log atother．This bring out in astriking way what was obsions to each obserer who handled thi－maize，mander，that there were on cach ear a number of both starchy and sweet kernels Which were intermediate in reepect to color．The distribution of such kernels into the Mendelian categoric－depends upon the
${ }^{1}$ Between the time when ear No．Io was counted by observer \mathcal{N} ．an 1 observer XI．one starclyy kernel was lost．Consequently the totals on this ear sum of all
 thath ior the other obsersers．

Fig. 4. Diagram showing the count of the different observers of each of the four classes of kernels for ear No. II.
personal "equation" or bias of each individual observer. As a matter of fact it was possible (and this was done) to make a perfectly graded series of either starchy or sweet kernels from a single ear which ranged from pure white at one end to pure deep

TMBLE
 （Jいにはにく。

11 rid	14xs＊it herve．					
		$\begin{gathered} 1, M+i \\ -i+i \end{gathered}$	$\begin{gathered} 11 \\ -111 / 8 \end{gathered}$	$\begin{aligned} & \text { is ise } \\ & \text { in }=1 . \end{aligned}$	$\begin{gathered} 1 \\ -t i n \\ h i t \end{gathered}$	$\begin{gathered} \text { ll ti } \\ \text { - wer } \end{gathered}$
		T－a）	\％．al	204，	6．17	1192
1	292	4%	7	21	201）	108
11.	2－1	53	－i	55	200	10 S
111.	222	17	7	11	200	10\％
11.	222	75	7	33	290）	10S
1.	22；	18	712	－12	20）	10S
11.	223	76	76	32	20）	10 S
111.	22 1	72	7	30	209	108
1111.	22：	4	75	26）	2（9）	1158
$1 \times$.	$\therefore 25$	8%	71	21	20）	10 S
\leqslant	2－1	6.1	74	． 14	2（））	108
C1．	223	$\cdots 1$	76	24	200）	103
SII．	$\therefore \therefore 1$	73	－3	$3{ }^{\prime \prime}$	201）	10\％
XIll．	222	\％）	7	3）	200	10S
K11：	231	9.8	$6 \checkmark$	14	210）	19§
1utals．	31197	1.004	989	448	4.180	1.512
Mreans．	224．30	70．01）	70.61	32.001	200．00	$10 \$ 8.90$

[^1]yellow at the other end, with each intermediate step practically as small as one cared to make it. An attempt was made to obtain photographs of such series of kernels which would demonstrate the fact of this gradation pictorially, but the photographic resources at command were not equal to the task and it had to be abandoned.
4. The data presented fully demonstrate, I think, the interesting fact that if each of these fifteen competent, and with one exception (No. Ň.), specially trained observers had independently undertaken an investigation of Mendelian inheritance in maize, and all used the same seed, of at least the two strains here employed, grown their crops in the same place, and even studied identically the same progeny ears, no two zould have fully agreed in the mumerical values of the F_{2} ratios.

II.

Let us now consider the question as to whether these deviations due to personal equation are of sufficient magnitude to be practically significant. The whole of the remainder of this paper will be devoted to a discussion, from different standpoints, of the quantitative aspects of the recorded classifications of the several observers. All these data will bear upon this general point. To answer the question specifically raised in this section it will only be necessary to show the range of the variation exhibited in the counts made. Table VI. gives for the four ears and the four classes of kernels on each ear (a) the mean numbers of kernels found loy averaging the counts of all observers, (b) the minimum and the maximum recorded number of kernels, (c) the total range of variation shown in the records, and (d) the percentage which this range is of the mean of the same class.

It is evident from this table that the personal element is one of real significance. When two careful observers can differ in their count of the same set of objects by as much as one and a half times the actual number of the objects counted the factor which leads to this difference is certainly not to be neglected.

An examination of the standard deviations and coefficients of variation of the counts leads to the same result. These constants are shown in Table VII. It should be said in this

Table V'I.

Showing the Range of Viriation Exhibited by All Observers in the Several Classifications.

1	1	Vean.	L.wwent Coumt	$\begin{aligned} & \text { 11 shest } \\ & \text { C., nt. } \end{aligned}$	K:nge.	Percentage of Kange in Ilean
8	Yellow starchy\%.	316.87	298	352	54	17.0
8	Jellow swote.	93.17	49	10.4	5.5	58.8
8	White starchy.	86.67	52	108	56	0.4 .6
8	White-w\%.\%.	35.(1)	25	-10	5.4	151.7
9	lellow-atrchy	2.40 .23	227	24)	22	9.1
9	Yellow -w.eet.	7511	62	82	20	26.5
1)	Whice starchy.	St.0u	7.4	93	19	23.4
の	White -weet.	219\%	1 S	37	19	77.0
111	Sillow-tarchy.	24) 0 (1)	245	260	15	0.0
11)	Jellow weet.	6.7.17	51	-9	27	40.0
(1)	White star hys.	4, 65	-1)	91	15	17.3
II)	White -wret.	2S.53	is	45	27	0.40
11	Ye-llen-tarchy	228.36	221	292	71	31.1
11	Vellow -woer.	7, 00	53	0.1	41	5.3 .9
11	White -tatrhy:	70.61	7	-s	71	1015
11	White - Wrote	32,0)	17	55	41	$12 \mathrm{S}$.
Mrath.						50.2

combection that for the particular art of problem bere dealt with it would appear that the methot of expreang the degree of briability which is usal in Table \I. i. e., the absulute value of the rance and it relation the mean) is probably of more real walle than are the comsemtimal comstants given in Table V'II. In the present instance it is the range of variation (i.e.e, the extreme amment les which differem whersers differ in their comme which in the thims of primary interest and practical signiticance.

Thale VII. gives the shambard teviation and coeflicient of batiaion for the coums of cach chase of kernets.

Time \'II.

$=$			W11.4.thes				Whate Sumert	
	- 14.1.11 llvitio.	$\text { } \because 11 .$		$\begin{array}{ll} 1 \\ 1 \\ 1.11 \\ \hline 10 \end{array}$	- antlar! \|rviation.	$\begin{aligned} & \therefore \text { eff } \\ & \therefore 11_{5} \end{aligned}$	- t.it $=$:ard \| 1 . v.at! in	
8	1.3 .11	4.2.1	12.90	14.98	13.85	14.82	13.58	39.14
9	6.09	2.5 .3	4.s.4	5.08	4.91	0.51	4.19	19.00
It)	3.52	1. 11	3.46	3.99	0.08	13.40	9.08	31.8 .4
11	17.56	7.82	17.86	25.28	10.52	13.5 .4	10.52	32.88

thince these const, thts are not used in any detailed comparisons it has not been thought necessary to calculate probable errors. . Itl the necessary data are at hand. fowerer, if anyome wistes to make these computations. It need only be remembered that for cars S. 9 and $10, n=15$ and for ear $1 t, n=1.4$.

This table brings out several points which need discussion. These are:

1. The amount of variation, both absolute and relative, in the counts is shown by the measures here used to be very large for some ears and classes of kernels. For no car, taken as a whole, can the variation fairly be considered negligible. Thus the conclusion previously reached by another method is confirmed.
2. The amount of variation in the sorting and counting is distinctly different for the different ears. From the values of the constants it would appear that ear No. II presented the greatest difficulty in respect to the classification of starchy kernels. In respect to sweet kernels ears No. 8 takes rank as offering the greatest difficulties. The starchy kernels of car No. 10 were the easiest to classify of all starchy kernets. In the case of sweet kernels ear No. 9 had fewer intermediates (i.e., was easier to classify) than any other ear.
3. Relatively there was closest agreement among the observers in respect to yellow starchy kernets, and least agreement in respect to white sweet kernels. This table illustrates the fact which was evident to the observers themselves, that there were marked differences in the ease with which the kernels of different ears and different classes could be sorted.

Now while it has been shown that the fifteen observers do not agree in their classification and counts, and that the differences are too large to be neglected, it may fairly be asked if the same result would appear if the group of observers participating were not merely scientifically trained and familiar with maize, but in addition had had a considerable amount of actual experience in the detailed study of variation and inheritance in plants. In other words, is not that special familiarity with the object which comes with the active prosecution of research in a particular field worth something in reducing the magnitude of one's personal error or "equation"? To get some light on this point Table VIIl. has been prepared. This is made up in exactly the same way as Table V'l., except that only observers V'l., V'lI., VIII., IX゙., XI., XII., XIII. and XIV. are included. These eight observers, comprising the staffs of Professor Johannsen's and the writer's
laboratories，have certainly had more extended experience in the direct and immediate study of plant breeding and of variation in plants（involved in all breeding investigation）than have the other olfervers of the original fifteen．Lists of published papers crould be cited in proof of this were it necessary；but the fact is obvious．Will this group of workers on problems of variation and isheritance show a similar degree of variability in their counts to that brought out in Table VI．？

TMBLE VIll．

1－10	$1-$	110n	$\begin{aligned} & 1 \text { int. } . \\ & \text { (iswin } \end{aligned}$	$\begin{aligned} & 112 t . \\ & 1=1 m t . \end{aligned}$	K．wh	
8	Vellow tarchy．	312.59	345	324	211	1.4
5	Villows ment．	$15^{4.13}$	St	110	15	14：3
－	Whise thathy．	（20．5，	5	ハ5	17	1s：
s	Whatericet．	30．53	25	43	15	59.1
c	Yellow－iaccles．	212.54	2.41	2%	－	2.1
＇	S llow sware．	27，00	75	si）	5	6.5
${ }^{1}$	White tarchy：	90．75	$i 1$	$\therefore 2$	；	$1 \cdot .3$
＇	White swert．	22.35	21	25	1	17.19
111	S．How starchy	$=18.35$	215	251	－	2.11
1．1	VIlow aneer．	－1．5	01	76	15	210，
10	W／me－Harchy．		5	（0）	5	5.7
10	Whter sweet．	2413	21）	5	15	$\because 2$
11	Sollew starchys	221510	221	22 x	\％	31
11	S．llow wrec．	A1．50	72	57	15	15.
11	What，tarchy：	－15	71	－	7	0.1
11	Whitermat．	2050	21	3＇	15	50.6
M，．11）						10.6

It is seen from comparion of this table with Table VI．that the amome of ariation in the sorting and connting is distinctly reduced in the group of students of ariation．Whereas the werage percentage of range in mean is 56.2 for Table V1．，it in but aco，or only apposimately one third as much，for Table VIll．Thun it appeare that in this case，just ats would bee experted on general grounds，special experience or practice in a particular line greatly reduces the personal equation． It mast be sad，however，that exen with the group of ob－ servers incluted in Table VIII．，the differences are too large to be negleeted．When the range of variation amongst different observers of the same thing amounts on the average（0）approxi－
mately one fifth (io. 6 per cent.) of the mean value of the thing conmed it indicates a source of error not lightly to be dismissed.

111.

It is desirable next to examine somewhat more closely into the nature and distribution of the discrepancies among the observers. A point of particular interest is to determine to what extent the counts indicate a definite and persistent bias on the part of an observer. There mav be great variation in the counts of several observers of the same set of things and yet each observer's judgments may be distributed quite at random about the mean. In order to get more light on this and some other matters Table IX. has been prepared. This table gives in successive columns for the four kernel classes, first, the mean deviation from the mean, all deviations being taken ugether withont reference to sign (i.e., the mean total devation), and second, the mean net deviation from the mean, got by taking the algebraic sum of the deviations. All four ears are used in getting these mean deviations. An example will make clear the method of obtaining the values given in this table. An examination of Tables II. to V. inclusive shows the following set of deviations from the means in the counts of yellow sweet kernels by observer No. V.

$$
\begin{aligned}
& + \text { Deviations from Mean. - Deviations from Mean. } \\
& 7.53 \text { (ear 8) } 2.47 \text { (ear 10) } \\
& 5.60 \text { (ear 9) } 10.00 \text { (ear II) } \\
& 13.13=\text { sum of }+ \text { deviations } \quad 12.47=\text { sum of }- \text { deviations. } \\
& \frac{13.13+12.47}{4}=6.40=\text { mean total deviation from mean } . \\
& \frac{13.13-12.47}{4}=+0.165=\text { mean net deriation from mean. }
\end{aligned}
$$

The last column of the table gives the total deviation from the mean of each observer, all ears being taken together and the deviations summed without regard to sign.

It is strikingly evident from the mean net deviations in this table that each observer was "a law unto himself." Nearly every one of the fifteen evidently had a different system of sorting.

Table IN．

Showing the Meal Devation from the Mean（Total and Net）and Total Devtatiocis of the Cor｀its of all Obserlers．

	Se bra	a ${ }^{\text {a }}$	$1 . \times$	－．．．．．er	11 h	tarch！	W	weet．	ミこ
$\begin{aligned} & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { = } \\ & \text { E } \\ & \text { 三 } \end{aligned}$		$\begin{aligned} & =0 \\ & \text { O } \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { 三 } \end{aligned}$	$\begin{aligned} & = \\ & \\ & \\ & = \end{aligned}$	$\begin{aligned} & = \\ & \text { = } \\ & \text { 2 } \end{aligned}$		
1.	20.23	＋23．75	10.10	－ 0.34	26005	－22．095	10.44	＋ 0.14	207．82
11.	6.01	－2．36	22．19）	－22．190	1.88	＋131	21.55	－ 21.55	217.40
III．	（）． 20	－0．2）	14.34	－14．31	10．2\％	－10．2，	13.30	$+13.30$	148.72
15.	11.91	＋7．6	2． 80	－ 9.03	9.93	－ 8.7 .5	2.94	－ 1.20	107．0．f
1.	ช． 79	－3：$\%$	6.41	－0．17	3．3－4	－ 3.00	5.55	$+5.55$	06.32
$\checkmark 1$.	3.51	－1．0．4	4.12	－ 1.12	2.54	－1．76	4.70	－ 4.70	（10．98
V11．	494	$=1.0 .4$	＋4．5）	$=4.57$	1．26	－ 4.2%	4.55	＋4．5．5	70．72
V111．	3.08	． 0.4	5.92	$=5.92$	3.26	＋ 3.20	6.20	－0．20	73.75
IX．	2.80	2.71	1．12	－ 1.12	2.41	－2．49	6.71	－0．70	75.35
¢．	4．83	－1．2）	6.05	－11．485	5．26	－ 3.2 （	6.05	-1.05	123．52
X1．	4.15	－ 1.51	＋1．37	A 1．17	3＇1	＋ 1.51	4.15	－ 1.15	610.02
X11．	3.83	－ 2.78	3.17	－ 317	， 51	7×3.01	3．70	-3.70	56.85
S111．	らが8	＋ 11.77	1．57	＋10\％	＋51	＋3．ミ1	3.95	－ 305	6.58
ぶ1	310	＋ 000	2． 17	¢ 9.17	5．1＂	－ 1125	9． 15	－1） 15	100.68
ぶ1	807	$=6.07$	4． 62	$4.4 \geqslant 5$	6.67	－ 5.11	5.0 .3	－5－93	76.46

Some of these differences are very interesting．For example： No．I．had a high net deviation on stardy kernels，tending to

 net deviations on the sarche and tending strongly w wer－ cotimate the seflows among the she eet kernclis．No．Il．had the tendency torndere－timate the yellow sweets，and comerpondingly
 catimated rather heatily all sellow－and oncrestimated all whites．
 sel of net diatrihntions，owing to hin idiosyeraty reppecting the discrimination between starchine and non－atarchiness．The result is that while he undereatimated the yellow starely kernels， he oterestimated all the other clanes．No．VI．somewhat ander－ estimated the yellow－tarchs，but overestimated the yellow sweet． No．X ．shons an extraurdinarily small net deviation on the sweet kernels，hut distinctly underestimated the yellow starchy． In general the table shows in a striking wase，that the individuality of the observer is a factor to be reckoned with in work of this sort．

It is of some interest to examine the trend of the total deviations given in the last column. The data are shown graphically in lig. 5, arranged in order from the smallest to the greatest deriation.

This diagram illustrates a point frequently overlooked. It is commonly argued that the more independent judgments one obtains regarding any point the more accurate will the average result be. W'c are apt to say that if ten men measure a stick the average of their measurements will necessarily be nearer to the true dimension than if but three men measure and their average be taken. But it is plainly evident from Fig. 5 and Tables V'I. and VIII. that the inclusion of observers I., II., III. added nothing to the accuracy of the mean. The point which is forgotten in assuming that greater numbers necessarily mean greater accuracy is apparent if we examine the equation for the probable error of a mean which is

$$
P \cdot E \cdot M=.6 \overline{7}+49{ }_{1}^{\sigma} n^{\sigma} .
$$

The probable error, to be sure, varies inversely with n, but it also varies directly with σ, the standard deviation. And, what is here of primary importance, the standard deviation tends to increase as n increases. Whether the probable error shall be smaller or not as the number of observations is increased depends upon what has happened in the meantime to the standard deriation. When n is small, as in the case here under discussion, the effect on the standard deviation of taking $n+1$ observations as compared with n may greatly outweigh its effect in the denominator of the probable error fraction.

IV.

The next point to be considered is the relative constancy of the same observer's error. If each of the fifteen observers had made a second count of all the ears at some considerable interval of time after the first, how closely would the recounts tally with the original counts? Such an experiment really tests, of course, the stability or constancy of an observer's judgment. It indicates the degree to which his standard of sorting is absolute, and to what extent it fluctuates.

It was not feasible to ask all of the original fifteen observers to go to the labor of recounting these ears. Second counts made after a relatively long lapse of time are, however, available from three observers (namely, VI., VIII. and IX.) for all four ears. While this gives only comparatively meager data, still some points of interest appear. These data are given in Tables N ., XI. and XII. It should be said that the recounting was done in the same way as the original count. In each case the observer had no access to the original data while the second count was in progress. No one of the three had any remembrance of what his (or her) original counts were. The writer has not been able to discover any factor which would make these recounts anything other than what they were intended to be, namely, really independent determinations of the same material by the same observers after a long lapse of time.

It will be remembered (cf. p. $3+9$ supra) that one kernel from ear No. 10 was lost in the course of the original counting. It is therefore obvisus that all the recoments of this ear must of necessity be one kernel smaller than the first counts.

Table X .

()rminal. AND SECONB COUNTS OF EARS S to II BY ObSERVER No. V'l.

lar an ! $\mathrm{Comm}^{\text {a }}$	Casses it henes.				1 Sute
	$\begin{gathered} \text { 1. Whu } \\ \text {-t..1r } \end{gathered}$	$\begin{aligned} & \text { 1. Uh.". } \\ & \text {-wer: } \end{aligned}$	Wher -turly。	$\begin{gathered} W_{\text {Whte }} \\ -w e \mathrm{cet} \end{gathered}$	
8. Mriginal.	313	100	90	29	January 21. 1910. dugust 10, 1911.
8. Recount	312	100	21	29)	
Ditterence.	-1	\bigcirc	+ I	0	
(). Otiginal.	212	79	8 I	20	January 21, 1910. . dugust 11, 191 I .
(). Recount.	2\%	76	83	2.3	
1)ittorste.	-2	-3	+2	$+3$	
16. Original.	251	75	85	21	January 21, 1910. August 11, 1011.
10. Recoumt.	2.4 .4	73	91	23	
1)iflomice.	-7	-2	+6	+2	
11, Original.	223	76	76	32	January 21, 1910. Auguct 10, 1011.
If, Recount.	22.3	75	76	33	
Difierence.	0	-1	-	+1	

The data in these tables indicate that, so far at least as these three olservers are concerned, the judgment of the individual is reasonably constant. This is plain if the total deviation of

Table Ni.
Original and Second Counts of Ears 8 to it by Observer No. Vili.

Par and Count.	Clasees on Kernels.				Date.
	1 ellow starchy.	$\begin{aligned} & \text { Yellew } \\ & \text {-weet. } \end{aligned}$	White starchy:	White Sweet.	
8, Original.	311	101	92	28	January 20,1910.
8, Recount.	309	93	94	36	August 12, 1911.
Difference.	-2	-8	+2	+8	
9. Original.	241	78	82	21	January 20, 1910.
9, Recount.	2.43	79	80	20	August 12, 1911.
Difference.	+2	+ 1	-2	- I	
10, Original.	2.47	75	89	21	January 20, 1910.
io, Recount.	246	73	89	23	August 12, 1911 .
Difference.	- I	-2	\bigcirc	+2	
I 1 , Original.	22.4	82	75	26	January 20, 1910.
II, Recount.	223	81	76	27	August I2, 1911.
Difference.	-I	-I	+1	+1	

Table Nil.
Original and Second Counts of Ears 8 to il bli Observer No. IX゙.

Far and Count.	Classes of Kernels.				Wate.
	lellow starchy.	Yellow sweet.	$\begin{aligned} & \text { White } \\ & \text { starchy. } \end{aligned}$	White Sweet.	
8, Original.	327	IOI	78	26	January 2I, igio.
8, Recount.	314	98	S9	31	August If. 1911.
Difference.	- 13	-3	+11	$+5$	
9. Original.	2.42	So	79	21	January 21, 1910.
9, Recount.	2.10	76	83	23	August II, I9II.
Difference.	-2	-4	+4	+2	
Io, Original.	249	70	87	26	January 2I, i910.
10, Recount.	246	71	89	25	August II, igII.
Difference.	-3	+1	+2	- I	
11, Original.	228	87	71	21	January 21, 1910.
II, Recount.	222	S8	77	20	August 12, I9II.
Dillerence.	-6	$+1$	+6	-1	

recounts from original counts be considered. In the case of observer No. VI. a total of sixteen kernels were differently classified in the recount from what they were originally. Since the whole number of kernels involsed in the experiment was 1,792, this means a discrepancy of less than one per cent. between two independent sortings more than a year apart. Such an error is
certainly negligible．Observer Vo．VIII．claswified eighteen kernets，all tokd．differenty in the recount than in the origina！． This again is only about one per cent．of the total kernels handled， and cannot be regarded as a significant error．In both of these cases ！\I．and VIII．）the discrepancies had to do entirely with the color classification．With observer IN．this was not the care．On both ear 8 and ear 9 she classed two kernels as sweet in the recount which she had originally called starchy．Alto－ gether this olserver clanifed thirty－five kernels differently in the recount from what she did in the original．This however repre－ sents a relative error of a litule leon than two per cent．No very great etress could be laid upon such an error．

From the tables it will be noted that there was a marked and nearly uniform tendeney on the part of all three observers to underestimate the vellow－（loth starchy and sweet）and to over－ estimate the whites，in the recoment－sompared with the orig－ inats．It seems probable that the callor of this lies，in part at least，in a fading of the yellow color during the time since the first count－were made．＇Thus it maty be that kernels which were plainly gedlow when firt combed are now white or very nearly －o．I further fact which would indicate that fading had owewred is foumd in the memtal impreseions of the obeersers．．It three found the matterial distinetly more difticult to clasify when re－ commed than when orginally commed．One feels certain that a part，at least，of this is due to a change in the material ite－df．

Recognizing fully the meagernese of the materiat，the facts so far as they gosem to indicate clearly that the same observer is likely to clas－ify the sume material in drout the same way every time．If a particular kind of bias is shown in one count it will appear cesemtially unaluered in successive trials．This is probatlly more true of observers especially experienced in dealing with the data of variation than in the care of those without such experience，though figure are lacking to demonstrate this．

I．

We come next the consideration of the eecond question pro－ poocel at the legiming（p．3＋1）．This was：＂Does somatic＂inter－ mediateness＇in maize imply gametic＇intermediateness＇？In
other words, do F_{2} kernels which are intermediate somatically give rise to any different sort of progeny when planted than do kerncls which belong clearly and indubitably to one or another of the well defined gametic classes in F_{2} ?" To answer this question carcfully controlled plantings of somatically intermediate kernels were made in 1910. Series of starchy and of sweet kernels were formed ranging in each case from pure white at one end to pure deep yellow at the other end. Then rows were planted as follows: (1) pure white, (2) deep yellow, (3) the lightest yellow to be found (= somatic intermediates), (4) the yellowest whites to be found (= somatic intermediates). The kernels in classes (3) and (4) were such as would be classified with the yellows by some observers and with the whites by others. The rows included about twenty plants each and were made in duplicate, and in some instances triplicate for both starchy and sweet series. In each row a varying number of ears were self-fertilized (i.e., pollinated by hand with pollen bome on the same plant). Owing to the numerous vicissitudes incident to hand-pollination, together with pressure of other work, as large a number of good ears as would be desirable was not obtained. Some of the possible gametic combinations were not represented at all in the progeny ears. This part of the investigation is, in consequence, not complete. It seems desirable, however, to present briefly the general result shown by the fifty odd ears at hand.

This result was that there was no discernible difference whatever between the progeny of groups (1) and (2) as a class, and that of groups (3) and (4) as a class. In (3) and (4) some of the kernels planted were of course heterozygotes and some were homozygotes. The same was true, however, of the kernels of (1) and (2). In each case a typical Mendelian result was obtained, and this result could have been predicted in every case (with the exception to be noted presently) had the gametic constitution of the kernel been known when it was planted. It coukd not have been predicted from the somatic appearance of the kernel.

The only behavior of an exceptional character observed in these selfed ears wats that in certain of the white sweet kernels,
which were homozygous recessives in respect to absence of yellowness and starchiness, selfing brought out a latent red. ${ }^{1}$ The three ears of this type which were obtained all came from kernels classificed in the planting as pure white (group (I)). No such ears were obtained from selfed sweet kernels in group (\dagger). The total number of homozggous, non-yellow sweet ears obtained was too small, boweter, to make it at all certain that similar red ears might not, with larger numbers, be obtained from group (4) kernels.

It is plamed to get further data on this portion of the investigation, using for planting the kernels of ears 8, 9, 10 and 1 I which formed the material for the personal equation part of the work. It can be satid at this time that the experiments with cross-bred maize oo far conducted furni-h no evidence that somatic "intermediatenes" connotes gametic intermediateness. The progeny of a deep yellow kernel selfed is not visibly different from that of a light yellow kernel selfed, provided both are of the same gametic constitution. The result of this experiment precisely agreen with Darl,ishire's extensive study of essemtially the same problem with peas. Indeed his final conclusion (loe. (it., p. 71) applien here without change of wording: "That in the attempt to predict the result of a gisen mating the somatic character not only of the parente and of the ancesters of the indi-vidual-mated, but of the individuals themselves, may be entirely left ont of ateomm; and that the expectation hased on a theory of the comtemts of the germ cello of the two indivitlats is fulfille

Resultesuch an are ne forth in this paper would certainly hase been at one time prochamed by oume as furnishing a refutation of Mendelism. Infact one of the carliest criticisms ${ }^{3}$ of Mendelian work was mainly devoted to calling attention to the existence of such somatic intermediates between Mendelian categories in the

[^2]case of peas as are here shown to exist in maize. That such variation, provided it be really somatic or fluctuational, is, however, of no real importance in relation to the cardinal facts of Mendelian inheritance has been shown by all experimentalists who have devoted attention to the matter. Bateson ${ }^{1}$ (loc. cit., pp. $2.40-24$) gives an illuminating discussion of the whole matter, with special reference to the phenomena in peas. East and Hayes ${ }^{2}$ discuss the same point with reference to maize and show that somatic intermediates behave in inheritance in accord with their gametic constitution rather than their somatic appearance. Certainly the time is past when facts such as are set forth in the present paper can be adduced in criticism of basic Mendelian principles.

The essential point brought out by this study is, it seems to me, that the well known general fact that every datum of science is a function (in the mathematical sense) of two variables, namely, the observer and the thing observed, is once more emphasized by a particular case.

A thorough investigation which brings out essentially this same point, though conducted on a different class of material and with a somewhat different object in view, has been made by Yule. ${ }^{3}$

It will be freely admitted by everyone as an abstract proposition that the personal idiosyncracy of the observer constitutes a source of error in all scientific obserting. Yet how often does the biologist not working on strictly quantitatise problems make any effort either to eliminate or determine the magnitude of this source of error in his case and in a specific instance? Anyone who has not experimented for himself on the matter can hardly realize how important, on the one hand, and how difficult on the other hand, it is to attain to any considerable degree of real objectivity in results. While the "exact" sciences are somewhat better off in this regard than biology, they are after all not greatly so. There has, to be sure, been a great deal of work done

[^3]on the theory of errors of observation, particularly as related to astronomy, physics, and like subjects, yet so late as 1902 Pearson ${ }^{1}$ demonstrated in a most convincing manner that much of the then currently accepted theory was wrong. and that all of it quite overlooked a factor which might be exceedingly important, namely, correlation of judgments.

The preent study is be no means a complete investigation of the problem of personal equation in Mendelian work. Correlation of error: sught to be studied, and certain other matters as well. But the prenent material is statistically entirely inadeguate for the diacuanion of these point-, and it does not seem feasible to collect more exten-ise data, since to dow involves too great at trephtos on the time and good nature of busy workers. Further the material here presented bring- out dearly the primarily cosemtial puinte. It show = that in . Mendelian ratio the peremat equation of the sharster mark a source of error which in the cate of maize in of contiderable magnitude. This source of error ruite oxershadon:- in masnitude, in this cater the error due to random samplings. liet it is the later alone which is ordinarily considered be Mendelion workers. The probable error of a Aendelian ratio at commonly calculated whe one the proheability that the -ample counted is a true representation of the general population from which it wasdratw. It tells one nothing Whoteser about the unconscious biso of the commer as a factor in producing the risult set down.

By was of summars it mat be aid that in this paper evidence is preacoted which hows that:

1. The olomed Fa Mendelian ration determined from the S.me four car of maia ly fiftern competent obervers all siffer from ont .mother.
2. The failare of all ebmerter- to agree in the ir dintribution of
 the cristate of somatically intermediate kerncls, and (b) the persomal him or idiownerac! of the chacerver.
3. The magnitute of the difference between the sereral obsersers is such is 10 demonstrate that the personal equation

 [1尸. 2.35-200. 11)い2.
is a factor which cannot safely be neglected in work of this character.
+. The observers who have had most experience in the appreciation and measurement of variation have the smallest personal equations on the class of material and the problem here treated.
4. There is no evidence that the progeny of somatically intermediate kernels is different, in any respect whatsoever, from the progeny of distinctly non-intermediate kernels of the same gametic constitution.

DIFFERENTIATION OF THE HUMAN CELLS OF SERTOLI.

THOMAS H. MONTGOMERI: JR. U'inersity of Pencisylvania.

This study is based on the examination of the testis of a negro about to vears of age, preserved in Zenker's lluid while still warm after his execution. The fixation was not as excellent as might be desired, evoplasmic details being not ahways preserved, but the presersation of the nuclei was on the whole very grow, and of spindle figure excellemt. A considerable variety of staining methods were employed, of which the most frutful proved to be Heidenhain's iron hamatoxyline, with various degrees of extraction, followed by alcoloslic eosin. Paratine sections were made of 5μ and $s \mu$.

For the gift of this material 1 am indehted to the kindness of 1)r. Addison, of the Liniserity of P'masthania.

The text diseram ewhibits the chef rewte obtained. The anterenultimbte spermatugonia contain cach arex (R.) within the ertoplasm. This does not divide in mitumis, conserguently just half of their daughter cells, the penultimate spermatogenia, come to contain each a roul, while half of them lack it. In the division of these pendtimate spermatogronia the rox does not divide but becomes distributed to one quarter of the ultimate spermatogonia. Each of every three ultimate spermatogomia produces by disi-ion two primary spermatocytes, and these cells Which belong wo the true germinal crole lack the rexl antirely: But each fourth ultimate spermategonium preserves the rod, and this rell without further division enlarges and becomes a cell of Serteoli. In this cell of Sertoli a primary rodlet (r. I) buds off from the rod; then the rod disappears, while the primary rodlet divides inte two secondary rollets (r. 2) and the latter persist in the Sertoli cell throughout it history.

The line of the Sertoli cell is therefore determined by the presence of the rod; one Sertoli cell is produced to every three

ultimate spermatogonia that lack the rod, or one Sertoli cell to every twenty-five spermatids.
2. Tife Antepenultinate Spermatogonil (Figs. i-8, Pl. I.). These are the largest germ cells in the adult testis, and like the other generations of spermatogonia are situated at the periphery of the seminiferous tubules. Frequently their nuclei are of irregular shape, as shown in Fig. I. Within the nuclei (Fig. 3) are two kinds of nucleolar structures: acidophilic plasmosomes and basophilic bodies; it would take a detailed study to determine whether the latter are chromatod mucleoli or modified chrommomes (allosomes). In their cell bodies are found chro-
matic rexl-, never more than one to a cell, warious forms of which are drawn in Figs. 2 8, that of Fig. 5 being the largest found. The rorts are homogeneous in appearance, dense, and they stain with basic stains but usually not as intensely as in the later -permatognonial generations. Such rods are usually in contact with the nuclear surface, lut not always, and to not occups. constant poritions with regard to the poles of the cell. Characteristic of the antepenultimate spermatogonia is the relatively small -ize of these roch and their frequently twisted form.

Thirty of these cells were carefully examined, and twentythree of them showed earh one rod. Of the remaining seven, fise were not wholly within the plane of the section, so that their rexts mas have been present in the excised portions. It is probable that carch cell of this generation comes to contain a rod, and that the rods are firs pereluced in this generation: no spermatogeniat of earlier gencrations were present, howe cer, consequenty. there can be mosurety of the latere peint.

What the methed of origin of these rokh max be could mot be determined. They are quite distinct from the idiorome, at leant when fulls formed, as shown in figg. 2. 1n one case (Fig. i) no rod was found but an irregular gramular mass (x) which is poosibly a precursor of the red: if this le os, the rod might be considered of be produced be the conglomeration of gramules It first seattered in the cell bedy: But the state of fixation of the cytoplasm was not =ulficiently reliable to allow of any satisfactory determination of this matter. There in mo ex illence that the rods are diecely producel from the mucters. Their origin is than unexplaned, though their sublerpuent history in perfectly clar.

Somiteres of these cells were found, but there can be no doubt that the roxts do not hecome divided for just half of the cells of the next generation contain rods.

3. The Prictlomite Spermatogosid (figic. (9-10).

Forty-nine cells of this generation were examined, care being taken to study only those that lay entirely within the plane of the section, and of these twente-four exhibited each a rod while twenty-fise showed no rods. Also six cases were found of two
nuclej in one cell body, indicating nuclear division without cytoplamic division of antepenultimate spermatogonia: in all six of these cases only one rod was present, and an example is shown in Fig. 9. There can thus be no doubt that half the penultimate spermatogonia contain rods and half do not.

Characteristic appearances of the rods are illustrated in Figs. 9-11, Pl. I., 1+16, Pl. II. They differ on the average from those of the preceding generation in being usually larger, straighter, and more deeply-staining with homatoxyline, which indicates they have been undergoing growth changes. ${ }^{1}$ Not infrequently they are curved around the nuclear surface (Fig. If) and the length of a rod may equal the diameter of a nucleus. Consequently they are in this stage very prominent constituents of the cell bodies and easily differentiated by safranine or hromatoxyline.

Mitoses of these cells were not frequent, but two clear cases (Il. II., Figs. 12, I3) were found, showing that the rod (R.) passes undivided into one of the daughter cells, and this is fully borne out by a study of their distribution in cells of the following generation. Fig. If shows the end result of such a mitosis in a case where the cell body had not divided and here there is but one rod. What is the nature of the seattered globules shown in Figs. 12 and 13 is doubtful; they may be discharged nucleolar material.
4. The Ultinate Spermatogonia (Figs. I7-2t, Pl. II.).

These are the smallest of the spermatogonia and the most numerous in the testis studied. One quarter of them contain cach a rod; three (puarters lack rods. One hundred and fortytwo of these cells were studied, at stages before any of them had enlarged into Sertoli cells, the precaution being taken to include only cells lying wholly within the section; of these twenty-five showed each one rod, and one hundred and seventeen showed no rods. This ratio is somewhat less than $1: 3$, which is readily explained on the ground that some of the spermatogonia with roxls harl alrearly become Sertoli cells and therefore were not includerl in the count. I very important and clear ease is that

[^4]of Fig．I7：this shows four nuclei，the granddaughters of the nucleus of an antepenultimate spermatogonium，while there has been no division of the cell body，and it will be seen there is but one rod to the four nuclei．The evidence is then decisive that one quarter of the cells for this generation contain each one roch．${ }^{1}$ In these cells the rods are on the average more massive than in preceding generations（Figs．17－2f），and while usually more or less curved are never twisted．Quite frequently one end of the rorl is lent off at an angle（Figs．17，22）．In these cells also the roxls are mon dense and acquire their maximum stain， staining fully ats intensely as the basichromatin；they generally but not always touch the nuclear surface．

5．DhFl：R1ENTHTHON AN1）HLSTORY OF TIIE：SLERTOLI CELLS
 (Fifis. 25-50).

All the ultimate spermatogonia that contain rods beeome cells of Sertoli，and those only：Conhing like cither rods or rodlets were found in any of the spermatoorves of spermatids．The Sortoli colls become cospecially marked bỵ their great growth． Fig．25．I＇l．II．，shows the beginning of such growth，the Surtoli cell（．1）srawing ont beyond it sinter nltimate spermatogonia
 growth shage in their emirely，and Figs． $30-30$ ，fl fo exhibit portions of them in still later stages．These cells became reda－ tively enormens as shown in Fig．5o，Pl．V．，which represemts a portion of a transection of the wall of a seminiferous tubule；in this figure the shaded portion represents the bodies of the Sertoli cells，which have grown far into the lumen of the tubule to embrace the spermatils．＇This great groweh is due mainly to the formation of vacuoles within the estoplasm，and in the figures only the larger of the vacuoles are shown，not the great number of minute ones．There vacuoles are drops of a non－staining lluid，like that contained within the cavity of the tubule；only in rare instances are any concretions found in the vacuoles．One end，the basal，of each surtoli cell remains adherent to the librous wall of the tubule and in the figures lines are drawn to denote

[^5]the inner border of the tubule; the other end, the distal, is the one that grows out and forms branches ramifying around the spermatocytes and spermatids. In the later history of the Sertoli cells: large spaces are found within them, as shown in Fig. 50, which are cavities in which germ cells had been situated before their transformation into spermatozoa. Boundaries between the Sertoli cells become indistinguishable, so that these cells come to constitute a syncytial cytoplasmic net of extremely vacublar structure (Fig. 50). In the hasal portions of the Sertoli cells parallel bundles of fibrils may be seen at certain stages (Fig. 43).

The nuclear changes are also characteristic, and represent a gradual transformation of the structure of the resting nucleus of an ultimate spermatogonium. The reticulum changes first into microsomal masses (Fig. 25, Pl. Il.). Then takes place a flowing of these masses together (Figs. $34^{-3}-3,4^{1-4}+3$, Pl. IH., IV.) until all the basichromatic substance of the mucheus becomes concentrated into a mass or karyosphere, and the particles remaining without the mass are oxychromatic. Figs. $4+$ and +5 , Pl. V., represent the result of this process. Then follow stages of dissolution of the karyosphere into minute granules, all of which become gradually oxyphilic (Figs. 46 and 48), Fig. 49 representing a degencrate nucleus at the close of the cell's cycle. During all these stages the nuclei become rery irregular, with deep indentations and lobations at their margins and grooves passing along their lengths. This irregularity of form and the central karyosphere are diagnostics by which these nuclei may be readily distinguished from those of neighboring germ cells. Further, the nuclei do not remain at the basal end of the cell, as they do in certain other mammals, but move out beyond the level of the spermatogonia (Fig. 50).

After passing through the series of changes just described the Sertoli cells degenerate, for there is no evidence that they go through a second cycle. This is proven by the later stages of these muclei (Figs. $47-+9$) which gradually become wholly achromatic and then disappear from view. Their vacuolar substance must at that time mingle with the fluid of the tubule. Fig. 25 (PI. II.) is interesting in this regard, for it exhibits a young Sertoli
cell (1) pushing out before it an old and degenerate one (D).
A Sertoli cell is therefore produced to every twenty-four spermatids, and after the latter have metamorphosed into spermatozoa and these spermatozoa have become discharged from the tubules, that Sertoli cell degenerates. Formation of Sertoli cells must then continue through life as long as formation of germ cells continues.

We now pass to the history of the rod in the Sertoli cells, that remarkable boty which differentiates them from the functional germ cells. This is at first a simple rod, and may remain such even in the beginning enlargement of the cell (Fig. 25, Pl. 11.). But this rod divides, and in most cases before the Sertoli cell hegins its growth. Stages of its division are rarely found, and the only ones observed are illustrated in Figs. 26-30, Pl. III. It will be seen that in the eases of Figs. 26 25 the rod is undergoing an unergall longitudinal clearage, a more semer and shorter rod abstricting from a portion of the larger one; this smaller rod may be callecl the primary rodlet. Perhaps one reaton why these stages are so setdon found is becallee this division can be seen clearly only when the rod lies at a particular angle of vision. Whether lig. 30 represents simply an unustally bent rext, or one that is in process of division, is hard to determine, for it was an isolated case. The condition immediately following this division is shown in Fig. St, with an unsually long primary rodlet (r. I) completely separated from the rod (R.) ; this is a cell body of the volume of that of an antepenultimate spermatogoniam, Where acoordingly extoplasmic division had not occurred, and where the origimal modens had divided white only one of its doughter nuclei had divided again. A case of rod and primary rodlet together at an umsually late stage is represented in Fig. +1, II. IV.

In four fifthe of the cases, in 81 out of too cells examined, the large rod completely disappears before the Sertoli cell starts in its grow th and in such cases only the primary rodlet is to be seen (Figs. 32-33. Pl. III.). Just so soon as the cell enlarges a pair of secondary rodlets are seen instead of the primary rodlet (Fig. 3t), and without doubt these are produced bye equal longitudinal cleasage of the primary rodlet, for they are always of
the same length and lic close together. In their later stages (Figs. $4,3,+6,4 \%$) these secondary rodlets undergo some increase in thickening, and in all cases these rollets persist within the Sertoli cell until the end of its cycle; they also probably degenerate there, for no signs of them were found within the germ cells or free in the fluid of the seminiferous tubule.

But in one fifth of the cases, 19 out of 100 cells examined, the originat rod continues visible for a shorter or longer period after the secondary rodlets have been produced, as shown in Figs. 35-39, 42, 45; and in Fig. 41 is drawn an unusual case of late persistence of the rod and primary rodlet together. The rofl may persist for a while as a single dense body (Fig. 38). Fig. 39 shows a case of such a single rod that has segregated into chromatic and achromatic parts, a rare condition. But as a rule it divides longitudinally as exhibited in Figs. 35-37, 41, 42, 45; this division begins and is most prominent near the middle region of the rod, when its ends may be still undivided, but cases were found where the rod had completely divided into two secondary rods (Figs. 35, fo, Fig. to being a rod from a cell of about the stage of the cell shown in Fig. 39). In the instances where the rod persists after the secondary rodlets have been produced, it never stains quite as deeply as the latter, and gradually becomes less and less chromatic until it can no longer be seen; no rod was observed in any cell after the karyosphere of the nucleus had disintegrated.

There is accordingly considerable individual variation in the behavior of the rod after it has abstricted the primary rodlet; in four fifths of the cells it then promptly disappears, in one fifth it persists for a variable period, but never until the end of the cycle of the Sertoli cell, and then undergoes a second longitudinal division which is this time an equal division. The rod when it persists generally remains in the basal portion of the cell body. The secondary rodlets are at first usually in contact with the surface of the nuclens, either hasal or distal, while they are later found near the distal pole of the nucleus and usually separated from it. Whether the disappearing rod contributes substance to the formation of the fibers in the eytoplasm (Fig. 43) could not be determined. It is also difficult to decide whether the
rods and secondary rodlets are or are not always enclosed in vacuoles.

Certain aberrant cases need mention. In a single instance a pair of secondary rodlets were found together with a rod in a penultimate spermatogonium (Fig. IO), a precocious case of rodlet formation; what the constricted acidophilic body in the cytoplasm of this cell may be, I do not know. Then in each of two cases of rather late Sertoli cells, instead of the general case of one pair of secondary rodlets, two pairs were found (Figs. H^{\prime}, f^{8}); these might have been produced from an unusually long primary rodlet, such as the one shown in Fig. 31, by the occurrence of a transverse as well as a longitudinal division.

It is truly surprising that no thorough account has yet been given of the hmman cells of Sertoli; indeed, the studies made so far are rather hintological than eytological.

Attention to these cells was first drawn be Seronli (1805), who called them "cellule ramificati." Most writers since his time have given them his name; but the term "fotliche cell" (coined by Valette st. (eorge) is frequently employed, as wedl as the term" "foot cell" (J. E.S. Moore), while v. Bhner ('こい) employed the name spermatoblat, and Benda ('gt) that of vegetative cell. The name follicte cell is generatly used for the cetls composing the spermatocysts of invertebrates and lower vertebrates, and that of Sertoli cell for the physologically correspondent cells of mammaliam testes.

As th the genetic relations of the Sertoli celts the germ cells proper the writers fall into groups, which Watheger ('o6) has designated as the dualists and the monists. The first of these regarel the two kinds of cells as of entirely different origin, the spermatogonia proceeding from primordial germ cells and the cells of Sertoli fom other elements. As dualists are to be clansed Watase, Bardeleben, Bendid, Waldever and Stephan. Watase ('02) and Bardeleben ('97) emnsider the sertoli cells to be interstitial testis cells that hate wandered into the seminiferous tubules: lout Bardeleben's figures are quite indecisive, and Watase, in his very brief account of litale over a page, drew his conclusions from
the similarity in color of the cells of Sertoli and the interstitial cells after staining with cyanine, chromotrop and erythrosine. Though Bardeleben thus holds the wwo kinds of cells to be of different origin, he nevertheless thinks that the Sertoli cells give rise to "a rudimentary scoond form of spermatozomes." Benda ('0t, '98), and Waldeyer relying upon him, considers the cell of Sertoli to arise from the indifferent cylindrical peritoneal cells. The dualists generally hold that a differentiated Sertoli cell remains functionally active during the life of the individual and does not regenerate more than the distal portion of its cell body; and they are also of the opinion that the cells of Sertoli proliferate themselves by division-amitotically, according to Bardeleben and Stephan, or mitotically according to Benda. On the other hand Prenant ('87), Schoenfeld ('or), Regaud ('99) and Bugnion ('o6) consider both cells of Sertoli and spermatogonia to be derived from one kind of cells, by a process of division of labor; and this is in agrecment with the results of most writers who have studied the origin of the follicular cells of the ovaries and testes of invertebrates-the follicular or nurse cell being generally regarded as a modified germ cell. Y'ct Regaud and Stephan ('o2) hold that the fully formed Sertoli cells proliferate germ cells as well as nourish them; while Bugnion believes "the primordial spermatogonium gives place to a plurinucleate plate (part of the parietal synctium) which contains in a common cytoplasm spermatic muclei and sertolian nuclei," after which the germ cells delimit themselves from the syncrtium that remains as a Sertoli cell.

My conclusions differ practically in their entirety from those of the writers mentioned. In the human testis the cells of Sertoli are of common origin with the germ cells, one out of every four ultimate spermatogonia becoming a Sertoli cell. Sertoli cells are thus not differentiated from the germ cells merely in early foetal history, but so long as ultimate spermatogonia continue to be producerl. A Sertoli cell of man once differentiated does not, so far ats I have olserved, divide again, and consequently does mot give rise to germ cells; further, a Sertoli cell dies completely after the spermatozoa that are associated with it depart from its surface, and it does not persist to nourish a second generation of spermatozoa. There being one Sertoli cell to every three defini-
tive ultimate spermatogonia there is necessarily one to every twenty-four spermatozoa; accordingly, in man the number of spermatozoa, spermatic bundle, associated with one Sertoli cell cannot be " 8 or 16 " as Bugnion states.

But the point of the greatest interest with regard to the differentiation of the human Sertoli cell, is that it is determined by the inclusion of a peculiar cytoplasmic rod, this rod first arising in the antepenultimate spermatogonia. No such "Sertoli cell determinant" has been made known in any other object. In the case of the differemtiation of the oögonia from the nurse cells in the orary of the beede Dytiscus, so well described be Giardina ('or), and corrohorated by Debaisieux ('og), there is a remarkable mechanism of differentiation of the nurse cells: here the cells that are to lecome oücye- receive a castoff reticular part of the nucleus, while the cells which lack this extruded mats become nurse cells. It will he ecen that this is an entirely-different procens from that dencribed be me for man, for in man the Sertoli cells are those that contain the differentiating boty:

The developmem of the human Sertoli cell is clearly a very beautiful cate of somatic differentiation. In fact, one may regard the multicellular organism as hating two periods of somatic differentiation: the firat when the tisalue cells become differentiated from the germ cells, and the second, when in the early mass of germ cells, the primorelial gemad, the sertoli cells become differentiated from the germ cell- proper. For the Sortoli cells may properly be classed as the soma of the testis.

Nothing like the rod that differentiates the hmman Sertoli celts from the other ultimate spermatogonia seems of be knewn in any other case of somatic differentiation. In the chassical case of Ascaris, discovered by Boreri, prospertive bordy cells catst off into the ertoplasm the ends of their chromosomes. In copepords and insects, according to Haicker and silventri respectively, a nucleolus or a mass of meleolar substance thrown out from the germinal vesicte of the egg comes ultimately to lie in cells of the germinal eycle. The origin of the rod of the human Sertoli cells I could not determine, bevond that it is first apparent in the eytoplasm of the antepenultimate spermatogonia, and that it probatbly forms there during the rest stage of the cells. It comes ${ }^{0}$ develop in all antepenultimate spermatogonia, therefore, before
the distinction of Sertoli cells and germ cells; it becomes transmitted without division to one quarter of the ultimate spermatogomia, and that quarter transforms into Sertoli cells. Under these conditions, on account of the precision of the process, this rod must be regarded as a Sertoli determinant, and as a cytoplasmic and not a nuclear determinant. Whether the rod, or its substance. emanated in the first place from the nucleus, can be determined only by some fortunate observer who has more and better fixed material than was in my hands. But there is no reason to regard it as mitochondrial, as a chondriosome, because granular mitochondria have been described in mammalian Sertoli cells by Benda and others; in my material no mitochondria were seen in the spermatocytes and spermatids, they were evidently dissolved by the action of the fluid of Zenker, and it is therefore probable they were dissolved also out of the spermatogonia.

The rod that comes to determine the Sertoli cells increases in size while in the cytoplasm, becoming most voluminous in the ultimate spermatogonia; outside of the mucleus, also, occurs its process of abstriction of the primary rodlet and the division of the latter into the secondary rodlets. It is therefore clearly an extramuclear determinant of the Sertoli cell; and this as yet unique process of somatic differentiation seems to be controlled loy an extranuclear body.

It has not been my intention to decide upon the function of the Sertoli cells. They increase greatly in size to produce a synertial mass loaded with intracellular droplets, probably of fatty nature: they envelope closely the rapidly growing spermatocytes and for this reason they are generally supposed, and probably correctly so, to nourish this generation of germ cells. The fluid within the seminiferous tubules contains, so far as I have observed, neither erythrocytes nor leucocytes, therefore is probably derised from the droplets of the Sertoli cells and not from the blood serum. The spermatids at the commencement of their histogenesis Inse their first connection with the Sertoli cells, while the nearly mature spermatozoa exhibit their hearls buried in the substance of the Sertoli cells; the latter is then a second orientation of the germ cells to the Sertoli cells, one that cannot subserve mutrition, for the developing spermatozon (lo not increase in size, hut which is rather, as Loisel ('o7) has shown, the expression
of some chemico-tactile response. It may then be the Sertoli cells fulfill three functions: to nourish the spermatocytes, to furnish the fluid within the seminiferous tubules, and to aturact the spermatozoa into oriented bundles.

It is certain that much more study is needed of the Sertoli cells, both from the standpoint of somatic differentiation as well as that of the physiology of the germ cells themselves.

LITERATURE LIST.

Bardeleben, K. v.
'97 Beiträge zur Histologie des Ifodens und zur Spermatogenese beim Menschen. Arch. Anat. Plys. Inat. Abth. Suppl.
'98 Weiture Beitrige zur Spermatogenese beim Menschen. Jena, Zeit.. 31. Benda, C.
'94 Anatomio des Ceschlechtsapparates. Ziileer's Ylandloweh der Harn- und Sexualorgane. Leeipzig.
'98 Ueber die Spermatogenese der lertebraten nad hoherer Invertebraten. 1. Arch. Anat. ['hys. Abth.

Bugnion, E., et Popoff, N.
'o6 I.a signification des faisceaux spermatiques. Bib\}. Anat. Paris, I'r.
Debaisieux, P.
'og lees díbuts de l'ovogínise dans le Dỵtiscus marginalis. 1 a Cellule, 25.
Ebner, V. v.
'75 Entersth hungen ther den Bau der samenkan hhen ef... beiden Satucetieren und bein Menschen. Rollett's L'nters. liat. Phys. Hist. Graz.
Giardina, A.
 Anat. Plyse, 18
Loisel, G.
'07 Contribution a l'itude de la forme et de lat taciculatiendes spermes dans le testicule. Mim, L.ab, Embryol. I'ari*.
Prenant. A.
'87 Eitude sur las straturedu tube semintire des Mammitire. Thise. Paris. Regaud, C.
'99 Sur la morphologic de la cellnle de Sertoli, etc. C. R. Assoc. Anat. P'aris. Schoenferd, H.
'oi Lat spermatogex me chez le tanreath. Arch. Binl.. ts.

Sertoli.

'65 Dell' esistenza di particulari cellule ramificate nei canalicoli seminifere dell' testiculo umano. 11 Murgagni.

Stephan, P.

'oz L'évolution de la cellule de Sertoli dors S'laciens. C. R. Soc. Biol. Baris, 54. Waldeyer, W.
'o6 Die (ieschlechtszellen. Hertwig's Handbuch der Entw, Hirbeltiere, I. Jena.
Watase, S.
'92 The Origin of the Sertoli's Cell. Amer. Nat.. 20.

EXPPLANATION OF PLATES I-V

All figures have been drawn by the author with the camera lucida at the level of the base of the microscope, and reduced one third in size in reproduction. Fig. 50 was drawn with Zeiss obj. C, ocular I2, all the others with the apochromatic immersion objective 1.5 mm ., ocular 12 .

The following abbreviations have been employed:
ld., idiozome.
R., rod.
r. I, primary rodlet.
r. 2 , secondary rodlets.
S.C., Sertoli cells.

Sp.G., ultimate spermatogonia.
Plite I.
Figs. 1-3. Entire antepenultimate spermatogonia.
Figs. 4-8. Rods of antepenultimate spermatogonia.
Fig. 9. A binucleate penultimate spermatogonium.
Figs. Io, if. Penultimate spermatogonia.

T. H. MCNTGCMERY

Plate II

Figs. 12, I3. Penultimate spermatogonia in divis:on.
Figs. If-16. Rods of penultinate spermatogonia.
FIG. I7. Quadrinucleate ultimate spermatogonium.
Fig. i8. Binucleate ultinate spermatogonium.
Figs. 19, 20. Utimate spermatogonia.
Figs. 2I-2.f. Rods of ultimate spermatogonia.
FIG. 25. An incipient Sertoli cell (A) next to two ultimate spermatogonia $B, C)$, and to a degenerate Sertoli cell (D). The imner margin of the wall of the seminiferous tubule is at the left.

T. H. MONTGOMERY

Plate III.
Figs. 26-30. Primary rodlet abstricting from the rod, early Sertoli cells. Fig. 3I. Trinucleate ultimate spermatogonium.
Figs 32, 33. Early Sertoli cells with primary rodlets.
Figs. 34-36. Secondary stages of Sertoli cells.

1
1

T. H. MON PGOMERY

Plate IV.

Succeeding stages of Sertoli cells arranged in the order of the nuclear changes Fig. 40 exhibits a dividing rod of a stage similar to tha of 4 r .

T. H. NONTGOMERY

Plate V.

Fics. if 47 . Later stages of Sertoli cells, Figs, 44 and 47 being oblique transsections.

Ficis. 48, 49. Degenerate nuclei of late Sertoli cells.
Fu. 50. Portion of a section of a seminiferous tubule. Uppermost is the wall of the tubule, and next to it a layer of ultimate spermatogonia. The syncytium of the sertoli cells is expressed by dark shading, and their nuclei are distinguishable by their angular form and central cliromatic body. The other cells shown are chiefly early spermatids.

ON THE CAUSE OF AUTOTOMY IN TUBULARIA.

OSC.IR RIDDLE.

In the course of studies on the oxidizing and reducing powers of the various tisules and body regions of hydromectuse the phenomenon of autotomy was obsersed to occur so generally. and so rapidly in Tubularia ats to insite attention to its cause. That Tubularia is capable of autotomy-i.e., of the self-clivision of its body-hats long been known, the process having been observed by Ciard, Locb, Driesch, Morgan, and others. Two investigators have definitely sought to determine the cause of the phenomenon. The conclusions of the ee two workers seem, however, not to be in accord. Gollewski maintains that degeneration of the hydranth precedes and conditions the atutomy; so that it is a degenerated hedranth that is severed from the hody. Morse ${ }^{2}$ - who neme unfortunately io have overlooked Godlewski's paper-writing in this journal states that autotomy may occur withont an initial degencration in the hydranth, if one can judge of this from histulogical examintion.

My own experience with antotomizing Tubularia indicates that when this process is effected very slowly and grodually, as is ordinarily the case, one can certainly sometimes find, as did Godlewski, that before the actual separation of the hydranth the batter has undergone considerable degeneration. On the other hand, I have had many autotomized hedranths to live in apparently perfect condition for three and four days. Godlewski himself notes one such hydranth which lived for two days. It is quite eass, too, to confirm Morse's statement that a rise in temperature fisors the occurrence of atotomy: Nevertheters, the peculiar conditions under which 1 was able to observe the attotomy convinced me that nether of the above mentioned supposed canses, nor yet both combined, is the immediate or

[^6]adequate cause of autotomy: I therefore gave a little special attention to this subject, the results of which may be summarized here.

The particular experience which seemed to contravene the proposed causes as being the actual immediate cause was the following: If normal healthy individuals of T. mesembryanthemum be held by the lower stem or stolon and drawn through any one of a varicty of solutions - sodium tellurite, sorlium selenite, etc.complete autotomy may occur in less than one minute! Clearly degeneration is not the cause of the autotomy in these cases. Other members of the colony taken from their moorings and placed in ressels supplied with fresh sea water remained for days without autotomy. When some of these were similarly drawn through pure sea water they remained intact without aututomy. It was found, moreoser, that the antotomy likewise occurred even when the animal was dipped into a solution of $\mathrm{Na}_{2} \mathrm{TeO}_{3}, \mathrm{NaSeO}_{3}$, etc., of lozer temperature than that from which it had just been removed. Here, too, the autotomy was rapidly and decisisely effected. In these cases the autotomy plainly could not have been caused by a rise in temperature; the temperature change actually being in the opposite direction. In many cases the animals were removed from water at $16^{\circ} \mathrm{C}$. and drawn through a solution at $13^{\circ} \mathrm{C}$.

In order to study the changes occurring in the rapidly autotomizing animals these were examined with a Zeiss binocular while being drawn through the solutions. By this means it was found: (I that as soon as the animal touches the solution there follows a very strong contraction of tentades, hypostome, peristome, etc.; (2) that the "neck" region becomes extremely contracted and narrow, and apparently so much weakened as to be unable longer to support the weight of the hydranth; or rather tor weak to sustain the slight pull on the hedranth as it is heing drawn through or lifted from the solution. The appearance here in such ats $t 0$ indicate that the contraction of the circular fibers of this region is of sufficient force, not only to close completely the central chamel, but also to separate and crowd out many chtoderm cells, and likewise to weaken their own adhesion and that of the other ectorlerm cells to each other. A zigorous con-
traction in response to stimulation therefore seems to be the effective cause of autotomy.

It has been possible in a few instances to get a beautiful demonstration of the strength of the contraction in the "neck" region. If a tubularian be found with the gastro-vascular cavity of the hydranth well expanded and full, it can sometimes be inducedby pricking the peristome - to contract the peristome first, and thus retain the whole of the fluid of the cavity. In this condition the hydranth somewhat resembles a rubber ball: the channel to the outside being closed by the contracted peristome, and the posterior continuation with the cavity of the stem or body being interrupted by the above-memtioned contraction of the "neek" region. If now, with an appropriate hant instrument, pressure be brought to bear upon this sphere, and the whole proceeding carriced out under the limocular, one can watch ererothing and gatuge with ones own mate the strenget of the contration in the peristome and "neck." In the instances where I have carried out this experiment I haze need been able to force the opening of the channel in the netk region. Some part of the hypustome wall is the first to break.

It is, too, this very strong contraction that carrice the comosare of the netk resion quite away from the perisare (ace lïg. o). Probably the reaten that the point of the attomome is atways sodedinitely localized in this "neck" region-at was first recognized leg © Bard - in that the remainder of the sember pertion of the animal is conered with a chitiano perisare which is rather impermealse and highly protective against stimuli.

In "nomal" case-thase in which the proces of athotomy is cexemed ower a periox of seteral hours or a day or two-it is well known that a bery complete histols sio of the cells in the "neck" region oweurs. There is gook ewidence however that in these canco, tow, the histolysis is preceded by a rather strong or by a prolonged contraction of this region. In sery weak solutions of tellurium and selenium salts, of acids and alkalis, and even loy watchful mechanical stimulation of the animal into continuonsly contracted state. I have been able to effect the

[^7] 18S7.
autotomy of healthy hydranths more gradually in periods extended to one to four hours, and to watch the course of the process in a single individual during this time. From these observations I may here record one or two points which seem to throw sume light on the reason for the histolysis just mentioned.

I cite the case of a tubularian which was kept mechanicallystimulated by touching or pricking the hydranth with a dissecting needle and in which the process of athotome had adranced at such a rate as readily to separate at the end of four hours when lifted from the sea-water. With the beginning of contraction in this animal the circulatory current in the "neck" region was stopped; indeed the circulatory-nutritive fluids were quite expelled and excluded from approximately two millimeters of this region; the entodermic walls of the tube here being completely and tightly apposect. The closure at this point also largely stopped for a time the circulation through the stem. The fluids, however, were as before in contact with the walls of the gastrovascular cavity everywhere except in the much contracted neck region. That is to say, in the contracted animal the normal nutritive fluids were in contact with all the structures with which they are normally in contact except at one point-the "neck" region; it is alzuays at this latter point that histolysis and autotomy later occur.

In a little less than an hour it was found that the dissepiment which divides the gastro-vascular cavity of the stem into two channels - one for the anterior, the other for the posterior flow of the circulatory fluids had been broken at a point a little below the contracted "neck," and that the usual circulation of fluids was again established within the stem. Soon however there accumulated at the point immediately below the neck a quantity of the red pigment and other débris from the circulation; thus the channel became so firmly plugged that even a relaxation of the contracted neek region could not now effect a reëstablishment of circulation in this "neck" region.

It is my opinion, furthermore, that the reëstablishment of this circulation after a few hours of contraction might be prevented or at least greatly hindered by another circumstance if for any cause the debris just mentioned shouk fail to collect and
act as an effective block. I refer to the accumulation of a gelatinous mass between the perisare and coenosare which begins to be secreted by the comosare soon after it pulls away from its contact with the perisarc. The secretion is perhaps of the nature

Representing the condition leading to autotomy in a tubularian. Such conditions are present in Tubularia which have been kept stimulated from one to several hours. $\quad 11 \mathrm{yd}$-hydranth; $B . D$. = break in disecpiment; C.C. = cuenosarc or body wall; D. - debris leit ly circulating current; G. $=$ gehatinous mass secreted by contracted ennosare; (i.l.C. $=$ gastronascular cavity of body; P. $=$ perisarc; S. (... -trongly contracted area - "neck."
of material for a new perisarc, and as noted by Godlewski it hardens on contact with water. The accumulation and hardening
of this mass would probably make a reopening of the closed channel very difficult or quite impossible.

We sce then that the contraction of the contractile parts of Tubularia acts differentially uponits various organs. Such contraction does not rob the hydranth of its contained 月uids, nor of its ability to circulate these fluids. The same is true for the stem region, except that there the actual movement of the fluids is in abeyance for a very short time. The contraction which occurs in the neek region, however, brings about far different relations between the contracting area and the nutritive medium. Here there results, not only a cessation of the circulation of fluids, but a complete loss of contact with these fluids following the complete closure of the channel; whitst finally the breaking of the dissepiment immediately below the neck region, and the subsequent plugging of the end of the connecting channel with pigment and déloris, preclude the possibility that such contracted region may again regain its circulation together with the food it brings. This area then necessarily disintegrates; and the break-the autot-omy-necessarity occurs at this the weakest point.

Our conclusion is that autotomy in Tubularia is the result of the contraction of the animal; similar but weaker contractions being common and central features in the behavior of the animal. If the contraction be either too strong, or too much prolonged, autotomy will follow. That is to say, if a very slight strain be put upon the "neck" region while its circular fibers are in a state of extreme contraction separation results at once. If the contraction be not so strong, but considerably prolonged, readjustments are effected in the circulation which prevent the ingress of food to the contracted "neck" region. Degeneration now occurs in this region and the break - the autotomy-follows at this same point. There is, then, no great mystery attached to "l'amputation spontanée"; not even a complex organic correlation to direct a watchfut and sacrificial neck in severing an offending head from an unoffending body.

The present work has been done at the Zoölogical Station at Naples while occupying a table supplied by the Carnegie Institution of Washington. To the president of the Carnegie Institution, and to the director and assistants of the Zoölogical Station,

I am much indebted. My best thanks are due to Professor Paul Mayer, of the Zoölogical Station, for special apparatus and for very many kindnesses. For other support of this work I am further indebted to the Laboratory of Experimental Therapeutics, The University of Chicago.

Naples,
March, igII.

WH 2 JJS I

[^0]: ${ }^{1}$ A detailed description of the conditions and manner of these experiments has been given elsewhere (I'arl, loc. cit.) and need not be repeated.

[^1]: 1 No connt wi this ear by observer No．KV．is included in this table．

[^2]: ${ }^{1}$ A similar result has recently been described by Emerson, R. A. Rept. Amer. Breeders: Smone., VI., $233237,191 \mathrm{I}$.
 ${ }^{2}$ 1).rbi-hire. 1. [). "An Fxperimental Estimation of the Theory of Ancestral Contributions in Heredity." Proc. Roy. Soc., 13, Vol. Sr, pp. or-79, 1909.
 ${ }^{3}$ Weddon. W". F'. R., "Mendel's I.aws of Alternative Inheritance in Peas." Biomelriku. Viol. I.. !p. 228-254. Plates I. and II., 1902.

[^3]: ${ }^{1}$ Bateson. Wr., "Mendel's Principles of Heredity." 2d Edit., Cambrjige, rgog.
 ${ }^{2}$ East, E. M., and Hayes, II. K., "Inheritance in Maize." Conn. Jgr. Expt. Stat., Bulletin 167, 1911.
 ${ }^{8}$ V'ule, G. L'., "On the Influence of Bias and Personal E¿¢uation in Statistics of Ill-Ilefined Qualitics." Jour. Anthropol. Inst., Vol. ત゙X゙XVI., pp. 325-38i, 19o6.

[^4]: ${ }^{1}$ The condition of the pair of rollets (r. 2) in lig. io will be explained later.

[^5]: ${ }^{1}$ Spermatogonia with two，three or four nuclei in a single cell body are unusually frequent and in such cases the sister nuclei are frequently of quite unequal volumes．

[^6]: ${ }^{1}$ Gudluwski, 巨.., " Zur Kenntnis der Regulationstorgange bei Tubuluriu mesembryanthemum." Roux's Irchit, Vol. IN, 1001.

 2 Morse, Max, " The Autotomy of the Hydranth of Tubularia." Biolobicil

[^7]: ${ }^{1}$ (Biart, A., "L.'Autotomic dans la sirie animale." Ketue scientifique, p. 029.

